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Abstract 
The division bug in Intel's Pentium processor has demonstrated the importance and the difficulty 
of verifying arithmetic circuits and the high cost of an arithmetic bug. In this thesis, we develop 
verification methodologies and symbolic representations for functions mapping Boolean vectors 
to integer or floating-point values, and build verification systems for arithmetic circuits. 

Our first approach is based on a hierarchical methodology and uses multiplicative binary 
moment diagrams (*BMDs) to represent functions symbolically for verification of integer 
circuits. *BMDs are particularly effective for representing and manipulating functions mapping 
Boolean vectors to integer values. Our hierarchical methodology exploits the modular structure 
of arithmetic circuits to speed up the verification task. Based on this approach, we have verified 
a wide range of integer circuits such as multipliers and dividers. 

Our *BMD-based approach cannot be directly applied to verify floating-point (FP) circuits. The 
first challenge is that the existing word-level decision diagrams cannot represent floating-point 
functions efficiently. For this problem, we introduce Multiplicative Power Hybrid Decision 
Diagrams (*PHDDs) to represent floating-point functions efficiently. *PHDDs explode during 
the composition of specifications in the rounding module in the hierarchical approach. To 
overcome this problem, we choose to verify flattened floating-point circuits by using word- 
level SMV with these improvements: *PHDDs, conditional symbolic simulation and a short- 
circuiting technique. 

Using extended word-level SMV, FP circuits are treated as black boxes and verified against 
reusable specifications. The FP adder in the Aurora III Chip at the University of Michigan was 
verified. Our system found several errors in the design and generated a counterexample for 
each error. A variant of the corrected FP adder was created and verified to illustrate the ability 
of our system to handle different designs. For each FP adder, verification took 2 CPU hours. 
We believe that our system and specifications can be applied to directly verify other FP adder 
designs and to help find design errors. We believe that our system can be used to verify the 
correctness of conversion circuits which translate data from one format to another. 
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Chapter 1 

Introduction 

Microprocessors have been widely used in digital systems such as workstations, personal 
computers, aircraft control systems. In AD 2010, microprocessors running at frequencies over 
1GHz will contain 90 million logic transistors and several hundred million cache transistors 
according to the Roadmap of Semiconductors [5]. Thus, more function units, such as digital 
signal processors, 3D graphic and multimedia instructions, will be added into microprocessors. 
The intense competition in the microprocessor field is resulting in ever shorter design cycles. To 
achieve it, more designers are added into design teams. To amortize the costs of development and 
manufacturing, microprocessors go to mass production a very short time after their introduction. 
Thus, a design error in a microprocessor can have a severe financial cost (e.g. the $475 million 
cost of Pentium DIV bug [36, 92]) and may lead to serious injuries or even loss of life when 
used in life-support or control systems. 

Proving the correctness of a microprocessor design is an important task. Simulation is the 
most popular verification technique in the industry. However, increasing complexity makes 
simulation insufficient to verify modern microprocessors. It is impossible to simulate all 
possible combinations and sequences of inputs. For example, the Pentium microprocessors 
have been tested by over 1 trillion of test vectors before production [29]. Gwennap [48] 
summarized the reported design bugs in Intel Pentium and Pentium Pro processors after mass 
production. Several bugs in the Pentium Pro processors can cause data corruption or system 
hangs and thus are visible to end users. Thus, the industry is interested in formal verification 
techniques for circuit designs. 

Arithmetic circuits, such as the Arithmetic Logic Unit (ALU) and the Floating-Point Unit 
(FPU) are important parts of microprocessors. These circuits performs data operations such 
as addition, multiplication, division, etc. The verification of arithmetic circuits is an important 
part of verification of microprocessors. The goal of our work is to develop techniques which 

1 



CHAPTER 1. INTRODUCTION 

enable the formal verification of arithmetic circuits. 

Section 1.1 discusses verification of arithmetic circuits. Section 1.2 briefly surveys work in 
the area of formal verification, especially verification of arithmetic circuits. The goals of the 
thesis are summarized in Section 1.3. Finally, section 1.4 discusses the thesis organization, and 
a summary of each chapter. 

1.1   Verification of arithmetic circuits 

Verification of arithmetic circuits has always been an import part of processor verification. 
In modern processors, arithmetic circuits contains ALUs, integer multipliers, integer dividers, 
floating-point (FP) adder, FP multipliers, FP dividers, FP square roots, and most of multimedia 
instructions. These circuits form an important part of microprocessors. Because of area and 
performance constraints, these circuits are not synthesized by automatic synthesis tools, rather 
they are custom designed. They can occupy as much as 20%-50% of the processor chip area. 
In Intel's Pentium II processor [51], these circuits occupied 20% of the chip area, and they 
accumulated up to 50% of the chip area in Sun's SuperSparc-2 processor [47]. 

The importance and difficulty of arithmetic circuit verification has been illustrated by the famous 
FDIV bug in Intel's Pentium processor which cost Intel $475 million. This bug was not covered 
by the one trillion test vectors used for this processor [29]. Traditional approaches to verifying 
arithmetic circuits are based on simulation or emulation. However, these approaches can not 
exhaustively cover the input space of the circuits. For example, the whole input space of each 
IEEE double precision floating-point circuit with one rounding mode is 2128 test vectors, which 
is impossible to simulate in practice. Theorem proving approaches require verification experts 
to manually guide the systems to complete the proof. Thus, to automatically verify arithmetic 
circuits, we need to employ a formal technique which can handle large circuits. Among all 
the formal verification technique, decision diagram approach comes closest to meeting these 
requirements. However, there are still many fundamental and pragmatic issues to be resolved. 
These issues include the explosion problem of decision diagrams, and specification and efficient 
verification of these circuits. We have addressed these issues in this thesis. 

1.2   Related work 

In this section, we summarize the research work on decision diagrams, which have been used 
in many applications such verification, logic synthesis. Then, we discuss different verification 
approaches which can be used to verify arithmetic circuits. Since this discussion is general and 
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quite broad, the specific work which is more closely related to our research will be discussed 
at the end of each chapter. 

1.2.1   Decision Diagrams 

Decision Diagrams are data structures to represent discrete functions and are derived from 
decision trees using reduction rules which produce a canonical form. The idea of representing 
Boolean functions as decision digrams can be traced back to Akers' paper [2], but the widespread 
use as a data structure for symbolic Boolean manipulation only started with the formulation of a 
set of algorithms to operate on these data structures by Bryant in 1986 [ 13]. After that, the basic 
ideas of BDDs have been extended to allow efficient representation of other classes of functions. 
As mentioned in [94], we encountered more than 43 different decision diagrams in the past 
several years. Good surveys of decision diagram related work can be found in [15, 16, 94]. 

In this section, we summarize a few decision diagrams which have had strong impact, especially 
in the area of formal verification. Based on the range of the function values, decision diagrams 
can be divided into two classes: Bit-Level diagrams which have Boolean values and Word-Level 
diagrams which have integer or floating-point values. 

Bit-Level Diagrams 
Binary Decision Diagrams (BDDs) [13] represent switching functions / : Bn -> B, where n 
is the number of input variables. BDDs are based on a decomposition of Boolean functions 
called the "Shannon expansion". A function / can be in terms of a variable x as 

/   =   OTA/* V xAfx (1.1) 

where A, V and overline represent Boolean product, sum and complement. Term fx (respec- 
tively, fx) denotes the positive (negative) cofactor of / with respect to variable x, i.e., the 
function resulting when constant 1 (0) is substituted for x. This decomposition is the basis for 
the BDD representation. 

Two alternative function decompositions can be expressed in terms of the XOR (exclusive-or) 
operation: 

/   =   fx ® xAfSx (1.2) 

= fx e lA/fe (1.3) 

where f$x denotes the Boolean difference of function / with respect to variables x, i.e. fsx = 
fx © fx-   Equation 1.2 is commonly referred to as the "positive Davio" or "Reed-Muller" 
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expansion, while Equation 1.3 is referred to as the "negative Davio" expansion. Functional 
Decision Diagrams (FDDs) [68] use the positive Davio expression as the basis of the graph 
representation of Boolean functions. For some classes of functions, FDDs are exponentially 
more compact than BDDs, but the reverse can also hold. To obtain the advantage of each, 
Drechsler et al have proposed a hybrid form called Kronecker FDDs (KFDDs) [42]. In this 
representation, each variable has an associated decomposition, which can be any one of the 
three given by Equations 1.1- 1.3. 

Minato has developed another variant of BDDs, called "Zero-suppressed" BDDs (ZBDDs) [58], 
for combinatorial problems that can be solved by representing and manipulating sparse sets of 
bit vectors of length n [58]. The data for a problem are encoded as bit vectors of length ??. Then 
any subset of the vectors can be represented by a Boolean function over n variables yielding 1 
when the vector corresponding to the variable assignment is in the set. Minato has shown that a 
number of combinatorial problems can be solved efficiently using a ZBDD representation [78]. 
It can be shown that ZBDDs reduce the size of the representation of a set of ??-bit vectors 
over BDDs by at most a factor of n [90]. In practice, the reduction is large enough to have a 
significant impact. 

Bit-level diagrams are not suitable for the verification of complex arithmetic circuits. First, it 
is very difficult to write the specification for each output bit as a Boolean function. Second, 
bit-level diagrams usually explode in size when representing arithmetic circuits. For example, 
BDD representations for integer multiplication have been shown to be exponential in the number 
of input bits [14]. Yang et. al reported that the number of BDD nodes to represent integer 
multiplication grows exponential at a factor of about 2.87 per bit of word size [97]. For a 16-bit 
multiplier, building the BDDs for the output bits requires about 3.8GB memory on a 64-bit 
machine (i.e. 1.9GB on a 32-bit machine). 

Word-Level Diagrams 
Building on the success of BDDs, there have been several efforts to extend the concept to 
represent functions over Boolean variables, with non-Boolean ranges, such as integers and 
real numbers. For example, it is very useful for verification of arithmetic circuits to represent 
vectors of Boolean functions as word-level functions such as integer or floating-point functions. 
A vector of m Boolean functions (/0, .A, ...,/„,_]) can be interpreted as a integer function F 
whose value at x = (a;0,a-i,...,a-n_i) is F(.f) = XXo' f>(?o- •••■ *n-\) x 2''. Keeping the 
variables Boolean allows the use of a branching structure similar to BDDs. The challenge 
becomes finding a compact way to encode the numeric function values. 

One straightforward way to represent numeric-valued functions is to use a decision diagrams 
like a BDD, but to allow arbitrary values on the terminal nodes. This representation is called 
Multi-Terminal BDDs (MTBDDs) [34] or Algebraic Decision Diagrams (ADDs) [4]. For 
expressing functions having numeric range, the Boole-Shannon expansion can be generalized 
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as: 

/   =   (l-x)-f, + x-fx (1.4) 

where •, +, and - denote multiplication, addition, and subtraction, respectively. Note that this 
expansion relies on the assumption that variable x is Boolean, i.e., it will evaluate to either 
0 or 1. Both MTBDDs and ADDs are based on such a pointwise decomposition. For some 
applications, the number of possible values is small enough that the graph size is not too big. 
In such applications, the simplicity of the representation makes MTBDDs viable candidate. 
However, these diagrams grow exponentially with the number of Boolean variables for the 
common integer encodings such as unsigned binary, ones complement and two's complement. 
For the case of unsigned binary numbers of length n, there are 2n possible values and hence 
the MTBDD representation must have 2n leaf nodes. 

For applications where the number of possible function values is too high for MTBDD, Edge- 
Valued BDDs (EVBDDs) are introduced by incorporating numeric weights on the edges in order 
to allow greater sharing of subgraphs [72, 73]. The edge weights are combined additively. The 
common integer encodings can be represented in linear size of EVBDDs. For two integers X 
and Y represented by EVBDDs, the sum and difference also have linear complexity. However, 
for the multiplication, the complexity and size of EVBDDs grows exponentially. Multiplicative 
edge weights are added into EVBDDs to yield another representation called Factored EVBDDs 
(FEVBDDs). However, these diagrams still cannot represent X ■ Y in polynomial size. 

To overcome this exponential growth, we proposed Binary Moment Diagrams (BMDs) which 
provides a compact representation for these integer encodings and operations. BMDs use a 
function decomposition with respect to the input variables in a manner analogous to FDDs. 
The function decomposition used by BMDs [20, 21], is obtained by rearranging the terms of 
Equation 1.4: 

/   =   h + x-fSx (1.5) 

where f$x — fx — fa is called the linear moment of / with respect to x. This terminology arises 
from viewing / as being a linear function with respect to its variables, and thus f$x is the partial 
derivative of / with respect to x. The negative cofactor will be termed the constant moment, 
i.e., it denotes the portion of function / that remains constant with respect to x. 

An extension of BMDs is to incorporate weights on the edges, yielding a representation called 
Multiplicative BMDs (*BMDs) [21]. These edge weights combine multiplicatively, rather than 
additively as with EVDDs. With *BMDs, word-level functions such as X + Y, X - Y, X • Y 
and 2X all have linear-sized representations. The development of *BMDs enables us to verify 
arithmetic circuits such as multipliers, dividers, etc. 
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Adapting the idea of KFDDs, Clarke, et al have developed a hybrid between MTBDDs and 
BMDs, which is called Hybrid Decision Diagrams (HDDs) [30]. In their representations, each 
variable can use one of six different decompositions, including Shannon, positive Davio and 
negative Davio decompositions. In their experience, the variables for the control signals should 
use Shannon decomposition to achieve smaller graph sizes. 

Adding both additive and multiplicative weights into HDDs yields another representation called 
Kronecker *BMDs (K*BMDs) [41]. In this representation, the variables can only use one of 
Shannon, positive Davio and negative Davio decompositions. Both HDDs and K*BMDs are 
superset of MTBDDs and BMDs. However, we do not find the additive edge weight useful for 
the verification of arithmetic circuits. 

For the word-level diagrams mentioned above, functions mapping Boolean variables into 
floating-point values can not be represented efficiently without introducing rational weights 
on the edges or the leaf nodes. The overhead of storing and manipulating the rational edge 
weights make them less attraction for representing floating-point functions. 

We introduced Multiplicative Power HDDs (*PHDDs) [28] to provide a compact representation 
for integer and floating-point functions by extracting powers of 2 for the edge weights rather 
than greatest common divisors in *BMDs. The edge weights only record the powers. In other 
word, the edge weight k represents 2h and the edge weights are combined multiplicatively in 
the same way as *BMDs. With this feature, *PHDDs can represent and manipulate integer and 
floating-point functions efficiently and can be used in the verification of floating-point circuits 
such as adders. 

1.2.2   Verification Techniques 

Theorem Proving 
In a theorem proving approach, the circuit is described as a hierarchy of components, and there 
is a behavioral description of each component in the hierarchy. The proof of the correctness 
of a design is based on the proofs of the correctness of its components, which is obtained 
by composing and inferring the proofs of the components at lower levels. Theorem provers, 
HOL [46], Boyer-Moore [8], PVS [80] and ACL2 [67], have been successfully used to verify 
several hardware systems. 

HOL, developed at Cambridge University, is one of the best know theorem provers applied to 
hardware verification [46]. Joyce [64] and Melham [77] also used HOL to perform verification 
of circuits. A significant application of the Boyer-Moore theorem prover is the verification of 
the FM8501 microprocessor by Hunt [57]. PVS provides a specification language integrated 
with a theorem prover, and support procedures to ease the burden of developing proofs. Srivas 
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and his colleagues have used PVS to verify several hardware designs such as a commercial 
processor [93]. 

Theorem provers have been used to verify arithmetic circuits and algorithms. Most of the 
IEEE floating point standard has been formalized by Carreno and Miner [26] in the HOL and 
PVS theorem provers. Verkest et al verified a nonrestoring division algorithm and hardware 
implementation using the Boyer-Moore theorem prover. Leeser et al verified a radix-2 square 
root algorithm and hardware implementation [74]. 

In response to Intel's famous DIV bug in Pentium processor based on SRT algorithm [76,87,96], 
the correctness of the SRT algorithm and implementation has been verified by Clarke et 
al [31] using a theorem prover, Analytica [35], and by Rueß et al [89] using PVS. Miner and 
Leathrum [79] generalized Rueß's verification work to encompasses many division algorithms 
and to includes a formal path relating the algorithms to the IEEE standard. AMD hired the 
CLI company to prove the correctness of the AMD 5K86's floating-point division algorithm 
using ACL2 [11]. They reported that over 1600 definitions and lemmas were involved in this 
proof. Kapur et al [66] used a theorem prover to prove the correctness of a family of integer 
multipliers based on Wallace trees. 

However, the basic weakness of the theorem proving approach is that it requires a large amount 
of user intervention to create specifications and to perform proofs, which makes them unsuitable 
for automation. Attempts at automation of proofs have not been particularly successful, and 
proofs still require substantial interaction and guidance from skilled users. 

Model Checking 
Model checking is an automatic verification methodology to verify circuits. In this approach, a 
circuit is described as a state machine with transitions to describe the circuit behavior. The spec- 
ifications to be checked are described as properties that the machine should or should not satisfy. 
Based on the data structure for representing state transitions, the model checkers can be catego- 
rized into: 1) pure BDD-based model checkers such as SMV [75], VIS [10] and COSPAN [53], 
and 2) other model checkers such as SPIN [55], Murphi [40] and COSPAN [53]. Note that 
COSPAN can use either BDD-based or explicit-state enumeration algorithms. COSPAN is the 
core engine of commercial verification tool FormalCheck™ from Lucent Technology Inc. 

Traditionally, model checkers used explicit representations of the state transition graph, which 
made their use impractical for all but the smallest state machines. To overcome this capacity 
hmitation, BDDs are used to represent the state transition graphs and thus allows model checkers 
(SMV, VIS and COSPAN) to verify systems with as many as 10100 states, much larger than can 
be verified using an explicit state representation technique. However, these model checkers 
still have the state explosion problem (i.e., BDD size explosion) while verifying large circuits. 
A number of approaches [23,45] have focused on the use of partitioned transition relations to 
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reduce the BDD size during state machine exploration, but the capacity limitation is still a major 
problem preventing model checkers from verifying industrial circuits without abstraction. 

Model checkers, SPIN, Murphi and COSPAN, use other techniques to improve the capacity 
of the model checking without using BDDs. SPIN uses an optimized depth-first-search graph 
traversal method to perform the verification task. To avoid a purely exhaustive search, SPIN uses 
a number of special purpose algorithms such as partial order reduction [54], state compression, 
and sequential bitstate hashing. Murphi explicitly generates the states and stores them in a 
hash table. To increase its capacity, Murphi uses many state reduction techniques including 
symmetry reduction [59] and exploitation of reversible rules [60]. To increase its capacity and 
performance, COSPAN uses several caching and hashing options, and a state minimization 
algorithm in its explicit-state enumeration algorithm. 

In general, these model checkers can verify systems with up to 500 latches. To handle the real 
circuit designs in industry, the circuits must be simplified by manual abstraction. For example, 
the verification of the circuit to handle the cache coherence among 16 processors must be 
abstracted to a model that contains fewer processors (e.g. 4 processors) and a smaller word size 
(e.g. 1 or 2 data bits instead of 32 or 64). A number of approaches [32, 84] have been proposed 
to perform the abstraction automatically. 

To verify arithmetic circuits, these model checkers have the following difficulties. First, their 
specification languages are not powerful enough to express arithmetic properties. For arithmetic 
circuits, the specifications must be expressed as Boolean functions, which is not suitable for 
complex circuits. Second, these model checkers cannot represent arithmetic circuits efficiently 
in their models. For example, SMV will have the BDD explosion problem for representing 
integer multipliers. 

In order to overcome these problems, Clarke et al presented word-level SMV based on BDDs 
for Boolean functions and HDDs for integer functions [30, 33]. The specifications of arith- 
metic circuits are expressed in word-level and represented by HDDs. Chen et al [29] have 
applied word-level SMV to verify arithmetic circuits in one of Intel's processors. In this work, 
floating-point circuits were partitioned into several sub-circuits whose specifications could be 
expressed in terms of integer operations, because HDDs can not represent floating-point func- 
tions efficiently. The main drawback of this partitioning approach is that the specifications are 
implementation dependent and cannot be reused for for different implementations. For exam- 
ple, two different implementations of the floating-point adder can yield different partitions, and 
thus the specifications for the sub-circuits for one design are different from those in another. 
Another drawback is that this approach requires user intervention to partition the circuits and 
reason about the correctness of the overall specifications from the verified sub-specifications. 

Symbolic Simulation 
Symbolic simulation is a well know technique for simulation and verification of digital circuits 
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and is an extension of conventional digital simulation, where a simulator evaluates circuit 
behavior using symbolic Boolean variables to encode a range of circuit operating conditions. 
The initial internal state variables as well as the input values can be Boolean expressions, which 
are usually expressed in parametric form [12]. This makes each run of a symbolic simulator 
equivalent multiple runs of a conventional simulator. Jain et al [63] presented an efficient 
method to generate the parametric form. 

After the introduction of BDDs by Bryant, symbolic simulation became more practical. Both 
COSMOS [18] developed at Carnegie Mellon University and Voss [91] developed at the Univer- 
sity of British Columbia use BDDs as the representations for Boolean functions. These two sim- 
ulators have been the framework for verification of different classes of circuits [6,19,61,81,82]. 
Beatty et al [6] verified a microprocessor using COSMOS. Voss has been used to verify memory 
arrays in the PowerPC processor [82]. Bose and Fisher [7] have used symbolic simulation to a 
verify pipelined hardware system. 

Compared with model checking, the symbolic simulation technique can handle much larger 
circuits, because this approach can only cover some of the input spaces in each simulation 
run. However, symbolic simulation can not used to completely verify arithmetic circuits such 
as integer multipliers, dividers, etc, because the input spaces of these circuits are very large 
and the BDDs blow up exponentially for these circuits. An exhaustive simulation to cover the 
entire input space is almost impossible for large integer multipliers, dividers and floating-point 
circuits. Another problem for symbolic simulation is that the specifications must be expressed 
as Boolean functions, which are very complicated for arithmetic circuits. 

Equivalence Checking 
In recent years, many CAD vendors offered equivalence checking tools for design verification. 
For example, the partial list of equivalence checkers are Formality (from Synopsys), Design 
Verifyer (from Chrysalis), VFormal (from Compass), Verity (from IBM). These tools perform 
logic equivalence checking of two circuits based structural analysis and BDD techniques. 

Some equivalence checking techniques have been described in [37, 38, 70]. The common 
assumption used in the equivalence checking is that two circuits have identical state encodings 
(latches) [70]. With this assumption, only the equivalence of the combinational portions of 
two circuits must be checked. Coudert et al [37, 38] and Cabodi et al [24] use a symbolic 
breadth first exploration of the product machine state graph to do equivalence checking for two 
circuits without identical state encodings. These tools can handle the large designs with similar 
structures. However, these tools can not handle the equivalent designs with little structure 
similarity. For example, an array multiplier and a booth-encoding multiplier can not be proved 
to be equivalent using these tools. Another drawback of equivalence checkers is that they all 
need "golden" circuits as the reference to be compared with. The correctness of "golden" 
circuits is still questionable. 
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Hybrid approaches: Theorem prover with model checking or simulation 
Another approach to verifying circuits is combining a theorem prover with a model checking 
or symbolic simulation tool [85, 65]. In this approach, theorem provers handle the high-level 
proofs, while the low-level properties are handled by the model checking or symbolic simulation 
tool. 

Camilleri [25] used simulation as an aid to perform verification of circuits using the HOL 
theorem prover. Kurshan et al [71] verified local properties of the low-level circuits of a 
multiplier using COSPAN and verified the correctness of the whole multiplier by a theorem 
prover to compose of the verified local properties. Aagaard et al [1] used Voss and a theorem 
prover to verify a IEEE double-precision floating-point multiplier. Compared with the theorem 
proving approach, this approach is much more automatic, but still requires user guidance. 

Other Approaches 
Burch [22] has implemented a BDD-based technique for verifying certain classes of integer 
multipliers. His method effectively creates multiple copies of the multiplier variables, leading 
to BDDs that grow cubically with the word size. The limiting factor in dealing with larger word 
sizes would be the cubic growth in memory requirement. Furthermore, this approach cannot 
handle multipliers that use multiplier recoding techniques, although Burch describes extensions 
to handle some forms of recoding. 

Jain et al [62] have used Indexed Binary Decision Diagrams (IBDDs) to verify several multiplier 
circuits. This form of BDD allows multiple repetitions of a variable along a path from root 
to leaf. They were able to verify C6288 (a 16-bit multiplier) in 22 minutes of CPU time on 
a SUN-4/280, generating a total of 149,498 graph vertices. They were also able to verify a 
multiplier using Booth encoding, but this required almost 4 hours of CPU time and generated 
over 1 million vertices in the graphs. 

Based on the Chinese remainder theorem, Kimura [69] introduced residue BDDs, which have 
bounded size, to verify a 16 x 16 integer multiplier. In [86], Ravi et al discuss how to choose 
a good modulus and also show how to build residue BDDs for complex circuits involving 
function blocks. They have shown that this approach can detect the bugs efficiently. However, 
this approach cannot be extended to verify larger integer multipliers such as 64-bit multipliers. 

Bryant [17] has used BDD to check the properties and invariants that one iteration of the SRT 
circuits must preserve for the circuit to correctly divide. To do the verification, he needed 
to construct a gate-level checker-circuit (much larger than the verified circuit) to describe the 
desired behavior of the verified circuit, which is not the ideal level of specification. 
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1.3   Scope of the thesis 

Approaches based on decision diagrams have been used to verify arithmetic circuits. However, 
direct application of decision diagrams in this domain is not without challenges. We classify 
these challenges into two categories - representation and methodology. The main represen- 
tation challenges are to overcome the explosion problem of the existing decision diagrams 
and to provide a compact representation for integer and floating-point functions such that the 
specification can be easily be expressed in word level. The methodology related challenges 
includes problems like having a framework to specify and verify arithmetic properties, automat- 
ing the verification process, and making the specification reusable. We have built on earlier 
work on decision diagrams and methodologies to overcome these challenges. The principal 
contributions of this thesis are the following: 

• 

• 

• 

*BMD-based hierarchical verification for integer circuits 
We have developed *BMDs to represent integer functions efficiently and thus have enabled 
the verification of integer circuits. Based on *BMDs and a hierarchical verification 
methodology, we have built a system to verify several integer circuits such as integer 
multipliers, dividers and square roots. 

Representation for floating-point functions 
We have developed *PHDDs to represent floating-point functions efficiently. We also 
have analyzed the complexities of representing floating-point addition and floating-point 
multiplication using *PHDDs. 

Methodologies for verification of floating-point circuits 
We have developed several methodologies for the verification of floating-point circuits, 
especially floating-point adders. These methodologies have been integrated into word- 
level SMV. 

• Verification of floating-point adders and conversion circuits 
A FP adder designed by Dr.   Huff at the University of Michigan was verified by our 
approach with reusable specifications. Several bugs were found in the design. A coun- 
terexample for each bug can be generated within 5 minutes.   The reusability of our 
specifications is demonstrated by the verification of a variant of Huff's FP adder. 

1.4   Thesis overview 

Chapter 2 presents Multiplicative Binary Moment Diagrams (*BMDs) which enable the verifi- 
cation of arithmetic circuits. The data structures and algorithms for *BMDs provide a compact 
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representation for integers functions. 

Chapter 3 discusses the verification of integer circuits such as multipliers, dividers and square 
roots. A hierarchical verification method based on *BMDs is presented for verification of 
integer circuits along with other methods. Based on these methodologies, the Arithmetic 
Circuit Verifier (ACV) was built to verify integer multipliers, dividers and square roots. 

Chapter 4 presents Multiplicative Power Hybrid Decision Diagrams (*PHDDs) for the verifica- 
tion of floating-point circuits. First, we discuss the limitations of *BMDs and HDDs and thus 
the need for a new diagram to represent floating-point functions. A performance comparison 
between *BMDs and *PHDDs is discussed. 

Chapter 5 discusses methodologies for verification of floating-point circuits, especially floating- 
point adders. First, we discuss the drawbacks of ACV which lead us to verify flattened designs 
of floating-point circuits. Then, we present several improvements of word-level SMV to enable 
the verification of floating-point circuits. 

Chapter 6 presents the verification work of a floating-point adder obtained from the University 
of Michigan. We discuss the circuit design of this FP adder and the reusable specifications for 
FP adders. Several bugs were found in this design by our system. A variant of this FP adder is 
created and verified to illustrate that our approach is implementation independent. 

Chapter 7 rounds off the thesis with an evaluation of the work and possible future research 
directions. 

The appendix shows the complexity analysis of representing floating-point addition and multi- 
plication using *PHDDs. 



Chapter 2 

Representations for Integer Functions 

To verify integer arithmetic circuits, we must have concise representations for word-level 
functions that map Boolean vectors to the integer values. Such Boolean vectors correspond 
to the input operands and the final result. In this chapter, we discuss Multiplicative Binary 
Moment Diagrams (*BMDs) which provide a compact representation for integer functions. 
*BMDs have efficient representations for common integer encodings as well as operations such 
as addition and multiplication, and enable us to easily verify integer circuits such as multipliers 
and dividers. The verification of these circuits will be described in Chapter 3. 

Section 2.1 presents the data structure for *BMDs. The *BMD representations of integer 
functions and operations are shown in Section 2.2. Then, the algorithms for *BMDs are 
presented in Section 2.3. Section 2.4 describes the related work. 

2.1    The *BMD Data Structure 

*BMDs represent functions having Boolean variables as arguments and numeric values as 
results. Their structure is similar to that of Ordered BDDs, except that they are based on a 
"moment" decomposition, and they have numeric values for terminal values and edge weights. 
As with OBDDs we assume there is some total ordering of the variables such that variables are 
tested according to this ordering along any path from the root to a leaf. 

2.1.1   Function Decompositions 

To illustrate ways of decomposing a function, consider the function F over a set of Boolean 
variables y and z, yielding the integer values shown in the table of Figure 2.1.   BDDs are 

13 
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Function MTBDD BMD 

y   z F 
0    0 8 
0     1 -12 
1     0 10 
l   l -6 

Figure 2.1: Example Function Decompositions. MTBDDs are based on a pointwise decom- 
position (left), while BMDs are based on a linear decomposition (right). 

based on a pointwise decomposition, characterizing a function by its value for every possible 
set of argument values. By extending BDDs to allow numeric leaf values, the pointwise 
decomposition leads to a "Multi-Terminal" BDD (MTBDD) representation of a function [34] 
(also called "ADD" [4]), as shown on the left side of Figure 2.1. In this drawing, the dashed 
line from a vertex denotes the case where the vertex variable is 0, and the solid line denotes the 
case where the variable is 1. Observe that the leaf values correspond directly to the entries in 
the function table. 

Exploiting the fact that the function variables take on only the values 0 and 1, we can write a 
linear expression for function F directly from the function table. For variable y, the assignment 
y = 1 is encoded as y, and the assignment y = 0 is encoded as 1 — y. Expanding and simplifying 
the resulting expression yields: 

F(x,y) 

=   8 - 20c + 2y + 4yc 

This expansion leads to the BMD representation of a function, as shown on the right side of 
Figure 2.1. In our drawings of graphs based on a moment decomposition, the dashed line from 
a vertex indicates the case where the function is independent of the vertex variable, while the 
solid line indicates the case where the function varies linearly. Observe that the leaf values 
correspond to the coefficients in the linear expansion. 

Generalizing from this example, one can view each vertex in the graphical representation of a 
function as denoting the decomposition of a function with respect to the vertex variable. The 
different representations can be categorized according to which decomposition they use. 

8     (l-y) (1-*)   + 
-12   (l-y) z         + 
10          y (1--)    + 
-6         y z 
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Boolean function / can be decomposed in terms of variable x in terms of an expansion (variously 
credited to Shannon and to Boole): / = x A £ V xA fx. In this equation we use A and V to 
represent Boolean sum and product, and overline to represent Boolean complement Term / 
(respectively, fx) denotes the positive (resp., negative) cofactor of / with respect to variable x 
i.e., the function resulting when constant 1, (resp., 0) is substituted for x. This decomposition 
is the basis for the BDD representation. 

For expressing functions having numeric range, the Boole-Shannon expansion can be general- 
ized as: 

/   =   (l-x)-fx + x-fx (2.1) 

where ■, +, and - denote multiplication, addition, and subtraction, respectively. Note that this 
expansion relies on the assumption that variable x is Boolean, i.e., it will evaluate to either 0 
or 1. Both MTBDDs and EVBDDs [73] are based on such a pointwise decomposition As 
with BDDs, each vertex describes a function in terms of its decomposition with respect to the 
variable labeling the vertex. The two outgoing arcs denote the negative and positive cofactors 
with respect to this variable. 

The moment decomposition of a function is obtained by rearranging the terms of Equation 2.1: 

/   =   /* + *•(/«- h) 
=   h + x ■ fSx (2.2) 

where fSx = fx - f- is called the linear moment of / with respect to z. This terminology 
arises by viewing / as being a linear function with respect to its variables, and thus fs is the 
partial derivative of/ with respect to x. Since we are interested in the value of the function for 
only two values of x, we can always extend it to a linear form. The negative cofactor will be 
termed the constant moment, i.e., it denotes the portion of function / that remains constant with 
respect to x. Each vertex of a BMD describes a function in terms of its moment decomposition 
with respect to the variable labeling the vertex. The two outgoing arcs denote the constant and 
linear moments of the function with respect to the variable. 

The moment decomposition of Equation 2.2 is analogous to the Reed-Muller expansion for 
Boolean functions: / = /* © a: A (/* ©/*). The expression fx@ /?is commonly known 
as the Boolean difference of / with respect to x, and in many ways is analogous to our linear 
moment. Other researchers [68] have explored the use of graphs for Boolean functions based 
on this expansion, calling them Functional Decision Diagrams (FDDs). By our terminology 
we would refer to such a graph as a "moment" diagram rather than a "decision" diagram. 

2.1.2   Edge Weights 
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Figure 2.2: Example of BMD vs. *BMD. Both represent the function 8 - 20z + 2y + Ayz + 
12.r + 2Axz + 15xy. *BMDs have weights on the edges that combine multiplicatively. 

The BMD data structure encodes numeric values only in the terminal vertices. As a second 
refinement, we adopt the concept of edge weights, similar to those used in EVBDDs. In our 
case, however, edge weights combine multiplicatively, and hence we call these data structures 
*BMDs. As an illustration, Figure 2.2 shows representations of the function 8 - 20c + 2y + 
Ayz + 12a: + 24xz + I5xy. In the BMD representation, leaf values correspond to the coefficients 
in the linear expansion. As the figure shows, the BMD data structure misses some opportunities 
for sharing of common subexpressions. For example, the terms 2y + Ayz and \2x + 2Axz can 
be factored as 2y(l + 2z) and 12.T(1 + 2s), respectively. The representation could therefore 
save space by sharing the subexpression 1 + 2z. For more complex functions, one might expect 
more opportunities for such sharing. 

The *BMD shown in Figure 2.2 indicates how *BMDs are able to exploit the sharing of common 
subexpressions. In our drawings of *BMDs, we indicate the weight of an edge in a square 
box. Unlabeled edges have weight 1. In evaluating the function for a set of arguments, the 
weights are multiplied together when traversing downward. Several rules for manipulating edge 
weights can be formulated that guarantee the resulting graph form is canonical. For representing 
functions with integer ranges, we require that the edge weights for the two branches leaving 
a vertex be relatively prime. We also require that weight 0 only appear as a terminal value, 
and that when a node has one such branch, the other branch has weight 1. This property is 
maintained by the way in which the *BMDs are generated, in a manner analogous to BDD 
generation methods. For the remainder of the presentation we will consider only *BMDs, The 
effort required to implement weighted edges is justified by the savings in graph sizes. 



2.2. REPRESENTATION OF INTEGER FUNCTIONS 17 

Unsigned Two's Complement Sign-Magnitude 

Figure 2.3: Representations of Integers. All commonly used encodings can be represented 
with linear complexity. 

2.2   Representation of Integer Functions 

*BMDs provide a concise representation of functions defined over "words" of data, i.e., vec- 
tors of bits having a numeric interpretation. Let x represent a vector of Boolean variables: 
£„-i,. ..,XI,XQ.  These variables can be considered to represent an integer X according to 
some encoding, e.g., unsigned binary, two's complement, BCD, etc. Figure 2.3 illustrates the 
*BMD representations of several common encodings for integers. An unsigned number is 
encoded as a sum of weighted bits. The *BMD representation has a simple linear structure with 
the different weights forming the leaf values. For representing signed numbers, we assume 
xn_i is the sign bit. The two's complement encoding has a *BMD representation similar to 
that for unsigned integers, but with bit xn^ having weight -2n_1. For a one's complement 
encoding (not shown), the sign bit has weight -2n_1 + 1. Sign-magnitude integers also have 
*BMD representations of linear complexity, but with the constant moment with respect to xn_i 
scaling the remaining unsigned number by 1, and the linear moment scaling the number by -2. 
In evaluating the function for xn_i = 1, we would add these two moments effectively scaling 
the number by — 1. 

2.2.1   Integer Operations 
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255 

15 

X+Y XY 2* 

Figure 2.4: Representations of Word-Level Sum, Product, and Exponentiation. The graphs 
grow linearly with word size. 



2.2. REPRESENTATION OF INTEGER FUNCTIONS 19 

Figure 2.4 illustrates the *BMD representations of several common arithmetic operations on 
word-level data. Observe that the sizes of the graphs grow only linearly with the word size n. 
Word-level addition can be viewed as summing a set of weighted bits, where bits X{ and m both 
have weight 2\ Word-level multiplication can be viewed as summing a set of partial products 
of the form X{2lY. In representing the function cx (in this case c = 2), the *BMD expresses 
the function as a product of factors of the form cVxi — (c2')Xl. In the graph, a vertex labeled 
by variable X{ has outgoing edges with weights 1 and c2' - 1 both leading to a common vertex 
denoting the product of the remaining factors. Interestingly, the sizes of these representations 
are hardly sensitive to the variable ordering—they remain of linear complexity in all cases. 
We have found that variable ordering is much less of a concern when representing word-level 
functions with *BMDs than it is when representing Boolean functions with BDDs. 

These examples illustrate the advantage of *BMDs over other methods of representing word- 
level functions. MTBDDs are totally unsuited—the function ranges are so large that they 
always require an exponential number of terminal vertices. EVBDDs have linear complexity 
representing word-level data and for representing "additive" operations (e.g, addition and 
subtraction) at the word level. On the other hand, they have exponential size when representing 
more complex functions such as multiplication, and exponentiation. 

2.2.2   Representation of Boolean Functions 

In verifying arithmetic circuits, we abstract from the bit-level representation of a circuit, where 
each signal is binary-valued, to a word level, where bundles of signals encode words of data. 
In performing this transformation we must represent both Boolean and word-level functions. 
Hence we require our data structure to be suitable for representing Boolean functions as well. 

Boolean functions are just a special case of numeric functions having a restricted range. 
Therefore such functions can be represented as *BMDs. Figure 2.5 illustrates the *BMD 
representations of several common Boolean functions over multiple variables, namely then- 
Boolean product and sum, as well as their exclusive-or sum. As this figure shows, the *BMD 
of Boolean functions may have values other than 0 or 1 for edge weights and leaf values. Under 
all variable assignments, however, the function will evaluate to 0 or to 1. As can be seen in the 
figure, these functions all have representations that grow linearly with the number of variables, 
as is the case for their BDD representations. 

Figure 2.6 shows the the bit-level representation of a 3-bit adder. It represents the 4 adder outputs 
as a single *BMD having multiple roots, much as is done with a shared BDD representation. 
The complexity of this representation grows linearly with the word size. Observe the relation 
between the word-level representation (Figure 2.4, left) and the bit-level representation of 
addition. Both are functions over variables representing the adder inputs, but the former is a 
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AND OR EXCLUSIVE-OR 

Figure 2.5: Representations of Boolean Functions. Representations as *BMDs are compa- 
rable in size to BDDs. 
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Cout 

Figure 2.6: Bit-Level Representation of Addition Functions. The graph represents all four 
outputs of a 3-bit adder. 
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single function yielding an integer value, while the latter is a set of Boolean functions: one 
for each circuit output. The relation between these two representations will be discussed more 
fully in our development of a verification methodology. 

In all of the examples shown, the *BMD representation of a Boolean function is of comparable 
size to its BDD representation. In general this will not always be the case. Enders [43] has 
characterized a number of different function representations and shown that *BMDs can be 
exponentially more complex than BDDs, and vice-versa. The two representations are based 
on different expansions of the function, and hence their complexity for a given function can 
differ dramatically. In our experience, *BMDs generally behave almost as well as BDDs when 
representing Boolean functions. 

2.3   Algorithms for *BMDs 

In this section we describe key algorithms for constructing and manipulating *BMDs. The 
algorithms have a similar style to their counterparts for BDDs. Unlike operations on BDDs 
where the complexities are at worst polynomial in the argument sizes, most operations on 
*BMDs potentially have exponential complexity. We will show in the experimental results, 
however, that these exponential cases do not arise in our applications. 

2.3.1   Representation of *BMDs 

We will represent a function as a "weighted pair" of the form («■, r) where w is a numeric 
weight and v designates a graph vertex. Weights can either be maintained as integers or real 
numbers. Maintaining rational-valued weights follows the same rules as the real case. Vertex 
v = A denotes a terminal leaf, in which case the weight denotes the leaf value. The weight «J 

must be nonzero, except for the terminal case. Each vertex r has the following attributes: 

Var(v): The vertex variable. 

Hi(v): The pair designating the linear moment. 

Lo(v): The pair designating the constant moment. 

Uid(v): Unique identifier for vertex. 

Observe that each edge in the graph is also represented as a weighted pair. 
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pair MakeBranch(variable x, pair (wi,vi), pair (wh,vh)) 
{ Create a branch, normalize weights. } 
{ Assumes that x < Var(%) and x < Var(ui) } 

if wh = 0 then return (wi,vi) 
w <— NormWeight(wi, u>h) 
wi f- wi/w 

Wh <r- Wh/w 

v •f- UniqueVertex(x, (w/, v{), (wh-, %)) 
return (w, v) 

vertex UniqueVertex{variable x, pair (wi,vi), pair («%,%)) 
{ Maintain set of graph vertices such that no duplicates created } 

key <r- [x, w;,Uid(q), u^Uid^)] 

found, v <— LookUp(UTable, key) 
if found then return v 
v <— Afew(vertex) 
Var(v) <- JC; Uid(v) f- £/md(); 
Lo(v) 4- (w/, «j); Hi(v) <- (teÄ, «fc> 
Insert(UTable, key, v) 
return v 

integer iYomjWfe/g/tf (integer w/, integer u%) 
{ NormaUzation function, integer weights. } 

w «- gcd(w;, wh) 
if w; < 0 or (wi = 0 and w^ < 0) 

then return — w 
else return w 

Figure 2.7: Algorithms for Maintaining *BMD. These algorithms preserve a strong canonical 
form. 

2.3.2   Maintaining Canonical Form 

The functions to be represented are maintained as a single graph in strong canonical form. 
That is, pairs (u>i, v\) and («>2, t^) denote the same function if and only if wi = w2 and v\ = i^. 
We assume that the set of variables is totally ordered, and that all of the vertices constructed 
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pair ApplyWeight(wtype u', pair («-, v)) 
{ Multiply function by constant } 

if w' = 0 then return (0, A) 
return (?/•' • w.v) 

Figure 2.8: Algorithm for Multiplying Function by Weight.  This algorithm ensures that 
edge to a nonterminal vertex has weight 0. 

Arguments Result 

w 

:     x 

w. 

Figure 2.9: Normalizing Transformations Made by MakeBranch.   These transformations 
enforce the rules on branch weights. 
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obey this ordering. That is, for any vertex v, its variable Var(v) must be less than any variable 
appearing in the subgraphs Lo(v) and Hi(v). 

Maintaining a canonical form requires obeying a set of conventions for vertex creation and for 
weight manipulation. These conventions are expressed by the code shown in Figures 2.7 and 
2.8. The MakeBranch algorithm provides the primary means of creating and reusing vertices in 
the graph. It is given as arguments a variable and two moments, each represented as weighted 
pairs. It returns a pair representing the function given by Equation 2.2. It assumes that the 
argument variable is less than any variable in the argument subgraphs. The steps performed by 
MakeBranch are illustrated in Figure 2.9. In this figure two moments are drawn as weighted 
pointers. 

When the linear moment is the constant 0, we can simply return the constant moment as the 
result, since this function is independent of variable x. Observe that this rule differs from the 
reduction rule for a graph based on a pointwise decomposition such as BDDs. In such cases 
a vertex can be eliminated when both of its children are identical. This reflects the difference 
between the two different function decompositions. Our rule for *BMDs is similar to that for 
FDDs [42, 68]. 

For other values of the linear moment, the routine first factors out some weight w by calling 
function NormWeight, adjusting the weights of the two arguments accordingly. We want to 
extract any common factor while ensuring that all weights are integers. Hence we take the 
greatest common divisor (gcd) of the argument weights. In addition, we adopt the convention 
that the sign of the extracted weight matches that of the constant moment. This assumes that 
gcd always returns a nonnegative value. 

Once the weights have been normalized MakeBranch calls the function UniqueVertex to find 
an existing vertex or create a new one. This function maintains a table (typically a hash table) 
where each entry is indexed by a key formed from the variable and the two moments. Every 
vertex in the graph is stored according to such a key and hence duplicate vertices are never 
constructed. 

Figure 2.8 shows the code for a function ApplyWeight to multiply a function, given as a weighted 
pair, by a constant value, given as a weight w'. This procedure simply adjusts the pair weight, 
detecting the special case where the multiplicative constant is 0. 

As long as all vertices are created through calls to the MakeBranch function and all multipli- 
cations by constants are performed by calls to ApplyWeight, the graph will remain in strongly 
canonical form. 
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Termination conditions 
op     (u'i,t>i)     (?r2. n) („■.,.) 

+      (O.A) 
+                    (O.A) 
+        («'1,1')        (W2,v) 

(»2- 12) 

("'I- !'l) 

ApplyWeight(u\ + i/2, (1-')) 
* (w'i. A) 

* («2^ A) 

ApplyWeight(u 1, (»2- '2)) 
ApplyWeight(u<2, («j. tj)) 

+                          (w2-A) A/?/?/yWe/g/rt(l/!r2, (t/-i, vi)) 

Table 2.1: Termination Cases for Apply Algorithms. Each line indicates an operation, a set 
of terminations, and the returned result. 

Rearrangements 
Arguments 

op          Condition 
Results 

«•'                                   (w'l-t'l)                («2- «2) 

* Uid(t-i) >Uid(*2) 
* UidO'i) <Uid(t2) 

«'1 • «2                               (1, l'l)                   (1, 12) 

«'1  ■ «2                               (1. "2)                   (1. l'l) 

+                |«'l|  >  | W"21 
+               |w'l| < | W2I 

NormWeight{u\, u2)    («'i/«'', t'i)    (i'^/«''-^) 
NormWeight(w2, vi)    (u^/ir1,^)    («'i/«'', t'i) 

-r «'l/«2                          (l'"l)                (l-"2) 

Table 2.2:   Rearrangements for Apply Algorithms.   These rearrangements increase the 
likelihood of reusing a previously-computed result. 

2.3.3   The Apply Operations 

As with BDDs, *BMDs are constructed by starting with base functions corresponding to 
constants and single variables, and then building more complex functions by combining simpler 
functions according to some operation. In the case of BDDs this combination is expressed by a 
single algorithm that can apply an arbitrary Boolean operation to a pair of functions. In the case 
of *BMDs we require algorithms tailored to the characteristics of the individual operations. To 
simplify the presentation, we show only a few of these algorithms and attempt to do so in as 
uniform a style as possible. These algorithms are referred to collectively as "Apply" algorithms. 

Figure 2.10 shows the fundamental algorithm for adding two functions. The function PlusApply 
takes two weighted pairs indicating the argument functions and returns a weighted pair indicat- 
ing the result function. This algorithm can also be used for subtraction by first multiplying the 
second argument by weight —1. This code closely follows the Apply algorithm for BDDs [9]. 
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pair PlusApply(pair (wuvi), pair (w2, i^}): pair 
{ Compute sum of two functions } 

done, (w, v) <— TermCheck(+, (w\, v\), («^, ^)) 
if done then return (w, v) 

w', (wi, fi), (w2, ^2) «- Rearrange(+, {wh vi), (iv2, ^)) 
key «- [+, «ix, Uid(«i), «£, Uid(^)] 
found, (w,v) <- LookUp(OpTable, key) 
iffound then return ApplyWeight(w', (w, «)) 
JC <- Mw(Var(i;i), Var(^)) 
{ Begin recursive section } 
(wihm) <~ SimpleMoment((wi, vi),x, 0) 
(wihvii) *- SimpleMoment({w2, 12), x, 0) 
(u>ih,vih) <— SimpleMoment((wi, vi),x, 1) 
(w2h,v2h) <- SimpleMoment((u!2, vi), x, 1) 
(«)j, «/> <- PlusApply((wlh vu), (w2i, «a» 
(w/l, «/,) <- PlusApply((wlh, vih), {w2h, V2h})) 
{ End recursive section } 
(w, u) «- MakeBranch(x, (wi, vi), (wh, %)) 
Insert{OpTable, key, (w,v)) 
return ApplyWeight(w', (w, v)) 

pair SimpleMoment(pair {w,v), variable*, integer Z?): pair 
{ Find moment of function under special condition. } 
{ Variable either at root vertex v, or not present in graph. } 
{ b = 0 for constant moment, b = 1 for linear } 

if Var(t;) ^ x 
if 6 = 0 

then return (w,v) 
else return (0, A) 

if 6 = 0 
then return Apply Weight(w, Lo(v)) 
else return ApplyWeight(w, Hi(v)) 

Figure 2.10: Apply Algorithm for Adding Two Functions. The algorithm is similar to the 
counterpart for BDDs. 
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It utilizes a combination of recursive descent and "memoizing," where all computed results are 
stored in a table and reused whenever possible. The recursion is based on the property that 
taking moments of functions commutes with addition. That is, for functions / and g and for 
variable x: 

[f + g]x  =  fx + 97 

[f + g]&T      =      fSr + 9S.r 

This routine, like the other Apply algorithms, first checks a set of termination conditions to 
determine whether it can return a result immediately. This test is indicated as a call to function 
TermCheck having as arguments the operation and the arguments of the operation. This function 
returns two values: a Boolean value done indicating whether immediate termination is possible, 
and a weighted pair indicating the result to return in the event of termination. Some sample 
termination conditions are shown in Table 2.1. For the case of addition, the algorithm can 
terminate if either argument represents the constant 0, or if the two arguments are multiples of 
each other, indicated by weighted pairs having the same vertex element. 

Failing the termination test, the routine attempts to reuse a previously computed result. To 
maximize possible reuse it first rearranges the arguments and extracts a common weight «'. 
This process is indicated as a call to the function Rearrange having the same arguments 
as TermCheck. This function returns three values: the extracted weight and the modified 
arguments to the operation. Some sample rearrangements are shown in Table 2.2. For the case 
of addition rearranging involves normalizing the weights according to the same conditions used 
in MakeBranch and ordering the arguments so that the first has greater weight. For example, 
suppose at some point we compute 6y — 9z. We will extract weight —3 (assuming integer 
weights) and rearrange the arguments as 3~ and — 2y. If we later attempt to compute I5z — I0y, 
we will be able to reuse this previous result with extracted weight 5. 

If the routine fails to find a previously computed result, it makes recursive calls to compute 
the sums of the two moments according to the minimum variable in its two arguments. In 
generating the arguments for the recursion, it calls a function SimpleMoment to compute the 
moments. This routine can only compute a moment with respect to a variable that either does 
not appear in the graph or is at its root, a condition that is guaranteed by the selection of .?• 
as the minimum variable in the two graphs. When the variable does not appear in the graph, 
the constant moment is simply the original function, while the linear moment is the constant 
0. When the variable appears at the root, the result is the corresponding subgraph multiplied 
by the weight of the original argument. The final result of PlusApply is computed by calling 
MakeBranch to generate the appropriate function and multiplying this function by the constant 
extracted when rearranging the arguments. 

Observe that the keys for table OpTable index prior computations by both the weights and the 
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vertices of the (rearranged) arguments. In the worst case, the rearranging may not be effective 
at creating matches with previous computations. In this event, the weights on the arcs would be 
carried downward in the recursion, via the calls to SimpleMoment. In effect, we are dynamically 
generating BMD representations from the *BMD arguments. Thus, if functions / and g have 
BMD representations of size mf and mg, respectively, there would be no more than mfmg calls 
to PlusApply, and hence the overall algorithm has worst case complexity 0(mfmg). As we have 
seen, many useful functions have polynomial BMD sizes, guaranteeing polynomial performance 
for PlusApply. On the other hand, some functions blow up exponentially in converting from a 
*BMD to a BMD representation, in which case the algorithm may have exponential complexity. 
We will see with the experimental results, however, that this exponential blow-up does not occur 
for the cases we have tried. The termination checks and rearrangements are very effective at 
stopping the recursion. 

The Apply algorithms for multiplication has a similar overall structure to that for addition, 
but differing in the recursive evaluation. Comments in the code of Figure 2.10 delimit the 
"recursive section" of the routine. In this section recursive calls are made to create a pair of 
weighted pointers {wh vt) and (wh, vh) from which the returned result is constructed. For the 
multiplication algorithm we show only its recursive section. 

The multiplication of functions / and g, denoted / -g can be defined recursively as follows. 
If these functions evaluate to constants a and b, respectively, then their product is simply 
f-g = a-b. Otherwise assume the functions are given by their moment expansions (Equation 
2.2) with respect to some variable x. The product of the functions can then be defined as: 

f-9    = h-gx+x(fx-gSx+f5x-gx)-\-x2f5:c-g5x (2.3) 

Under the Boolean domain restriction, i.e., considering only variable assignments 6 such that 
<f>(x) e {0,1}, we are guaranteed that x = x2. Equation 2.3 can be rewritten as following: 

f-9   = h-gs + x(fx ■ g5x + fsx-gx + f5x ■ gsx) (2.4) 

Figure 2.11 shows the recursive section for multiplying a pair of functions, using the formulation 
of linear product given by Equation 2.4. Each call to MultApply requires four recursive calls 
plus two calls to PlusApply. With the rearrangements shown in Table 2.2, we can always extract 
the weights from the arguments. Hence if the arguments have *BMD representations of ms and 
mg vertices, respectively, no more than mfmg calls will be made to MultApply. Unfortunately, 
this bound on the calls does not suffice to show a polynomial bound on the complexity of the 
algorithm. The calls to PlusApply may blow up exponentially. 
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{ Begin recursive section } 
w'H, m) <r- SimpleMoment((iti, m), x, 0) 
wii, m) <- SimpleMoment({w2, ii),x, 0) 
wi/,, fi/j) <- SimpleMoment((ui, v\),x,l) 
v>2h, nh) <- SimpleMoment((w2< n),x, 1) 

w/, 17) «- MultApply((wu- i'u), (w2/. '2/)) 
«M, Vhh) *- MultApply((w\h' v\h), (W2h.l>2h)) 

v>hi, vhi) <- MultApply((wVl- V\h), {w2i- m)) 
wih, i'ih) <- MultApply((u<u, vu), (w2h- iih)) 
wfc, vh) 4- PlusApply({v-hh,vhh), PlusApply{{icM. vM), (un-m))) 

{ End recursive section } 

Figure 2.11: Recursive Section for Apply Operation for Multiplying Functions. This 
operation exploits the ring properties of linear product. 

2.4   Related Work 

Enders [43] has shown that the representation size for Boolean functions may differ exponen- 
tially for BMD, EVBDD and FDD representations. He also proved that the multiplication of 
BMDs and *BMDs as well as the addition of *BMDs may have exponential operations in the 
worst case. Arditi [3] used *BMDs for verification of arithmetic assembly instructions to delay 
the use of theorem provers. Rotter et al [88] used *BMDs to represent polynomial functions. 
Their result shows that *BMDs have better performance than ZBDDs in terms of the number 
of nodes and CPU time. 

Clarke, et al. [30] extended BMDs to a form they call Hybrid Decision Diagrams (HDDs), 
where a function may be decomposed with respect to each variable in one of six decomposition 
types. In our experience with HDDs, we found that three of their six decomposition types are 
useful in the verification of arithmetic circuits. These three decomposition types are Shannon, 
Positive Davio, and Negative Davio. Therefore, Equation 2.2 is generalized to the following 
three equations according the variable's decomposition type: 

/   = 

' {l-x)-fr + x-fr    {Shannon) 
f- + x . fSr (Positive Davio) (2.5) 
'fT + (1 - x) ■ fSj       (Negative Dario) 
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Here, /fö = fe - fx is the partial derivative of / with respect to x. The BMD representation is 
a subset of HDDs. In other words, the HDD graph is the same as the BMD graph, if all of the 
variables use positive Davio decomposition. In their experience, the variables for the control 
signals should use Shannon decomposition to achieve better performance. 

Multiplicative edge weights are added into EVBDDs to yield another representation called 
Factored EVBDDs (FEVBDDs). However, these diagrams still cannot represent X ■ Y in 
polynomial size. 

Adding both additive and multiplicative weights into HDDs yields another representation 
called Kronecker *BMDs (K*BMDs). In their representation, the variables can only use one 
of Shannon, positive Davio and negative Davio decompositions. Both HDDs and K*BMDs are 
the superset of MTBDDs and BMDs. However, we do not find any usefulness of the additive 
edge weight for the verification of arithmetic circuits. 

Table 2.3 summarizes the complexity of different word-level decision diagrams to represent the 
integer functions and operations such as X, X + Y, X * Y, X2 and 2X. Note that *BMDs and 
K*BMDs have more compact representations than others. 

Form 
MTBDD 
EVBDD 

FEVBDD 
BMD 
HDD 

*BMD 
K*BMD 

X X + Y X * Y X2 sir 

exponential exponential   exponential exponential exponential 
linear linear exponential exponential exponential 
linear linear exponential exponential exponential 
linear linear quadratic quadratic exponential 
linear linear quadratic quadratic exponential 
linear linear linear quadratic          linear 
linear linear linear quadratic          linear 

Table 2.3:  Word-Level Operation Complexity.   Expressed in how the graph sizes grow 
relative to the word size. 
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Chapter 3 

Verification of Integer Circuits 

*BMDs can serve as the basis for a hierarchical methodology for verifying integer circuits 
such as multipliers and dividers. At the low level, we have a set of component modules 
such as add steppers, Booth steppers, and carry save adders described at both the bit level (in 
terms of logic gates) and at the word level (as algebraic expressions). Using a methodology 
proposed by Lai and Vrudhula [73], we verify that the bit-level implementation of each block 
implements its word-level specification. At the higher level (or levels), a system is described 
as an interconnection of components having word-level representations, and the specification 
is also given at the word-level. We then verify that the composition of the block functions 
corresponds to the system specification. Using this technique we can verify systems such as 
multipliers that cannot be represented efficiently at the bit level. We also can handle a more 
abstract level of specification than can methodologies that work entirely at the bit level. Based 
on *BMDs and this hierarchical verification methodology, we have built an Arithmetic Circuit 
Verifier (ACV) to verify integer multipliers, dividers, and square roots successfully. 

The outline of this chapter is organized as following. Section 3.1 describes our hierarchical 
verification methodology using *BMDs as the underlying representation. Section 3.2 describes 
the verification system based on a hierarchical verification methodology. Additional techniques 
are introduced in Section 3.3 to handle some special circuits such as multipliers using carry-save 
adders. 

3.1    Hierarchical Verification 

Figure 3.1 illustrates schematically an approach to circuit verification originally formulated by 
Lai and Vrudhula [73]. The overall goal is to prove a correspondence between a logic circuit, 

33 
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Circuit 

1=1 Bit Level 

■■■ Word Level 

Specification 

Figure 3.1: Formulation of Verification Problem.   The goal of verification is to prove a 
correspondence between a bit-level circuit and a word-level specification 

represented by a vector of Boolean functions /, and the specification, represented by the 
arithmetic function F. The Boolean functions can correspond to the outputs of a combinational 
circuit in terms of the primary inputs, or to the outputs of a sequential circuit operated for a 
fixed number of steps, in terms of the initial state and the input values at each step. Assume 
that the circuit inputs (and possibly initial state) are partitioned into vectors of binary signals 
.f1,..., xk (in the figure k = 2). For each set of signals P, we are given an encoding function 
ENQ describing a word-level interpretation of the signals. An example of such an encoding 
function would be as a 16-bit two's complement integer. The circuit implements a set of 
Boolean functions over the inputs, denoted by the vector of functions f{x\..., xA'). Typically 
this circuit is given in the form of a network of logic gates. Furthermore, we are given an 
encoding function ENC0 defining a word-level interpretation of the output.  Finally, we are 
given as specification a arithmetic function F(Xi , A'/,), where A',- = Encj(x'). The task 
of verification is then to prove the equivalence: 

ENC0(/V,...,.ffr)) F(ENC!(xl ),..., ENC,(.fA-)) (3.1) 

That is, the circuit output, interpreted as a word should match the specification when applied 
to word interpretations of the circuit inputs. 

*BMDs provide a suitable data structure for this form of verification, because they can represent 
both bit-level and word-level functions efficiently. EVBDDs can also be used for this purpose, 
but only for the limited class of circuit functions having efficient word-level representations as 
EVBDDs. By contrast, BDDs can only represent bit-level functions, and hence the specification 
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Figure 3.2: Multiplier Circuit Different Levels of Abstraction Each square contains an AND 

gate and a full adder. The vertical rectangles indicate the word-level partitioning yielding the 
representations shown on the right. 

must be expanded into bit-level form. While this can be done readily for standard functions 
such as binary addition, a more complex function such as binary to BCD conversion would be 
difficult to specify at the bit level. 

3.1.1   Hierarchical Verification 

For circuits that cannot be verified efficiently at the bit level, such as multipliers, we propose a 
hierarchical verification methodology. The circuit is partitioned into component modules based 
on its word-level structure. Each component is verified against a word-level specification. Then 
the word-level functions of the components are composed and compared to the overall circuit 
specification. 

Figure 3.2 illustrates the design of two different 4-bit multipliers. Each box labeled i, j in the 
figure represents a "cell" consisting of an AND gate to form the partial product x{ A yj, and a full 
adder to add this bit into the product. The vertical rectangles in the figure indicate a word-level 
partitioning of the circuits, yielding the component interconnection structure shown on the 
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upper right. All word-level data in the circuit uses an unsigned binary encoding. Considering 
the design labeled "Add-Step", each "Add Step ?'" component has as input the multiplicand 
word X, one bit of the multiplier y,, and a (possibly 0) partial sum input word P/,. It generates 
a partial sum word PO,, where the functionality is specified as PO; = PI,■ + 2' • y, • A'. 

Verifying the multiplier therefore involves two steps. First, we must prove that each component 
implements its specification. Second, we must prove that the composition of the word-level 
functions matches that of integer multiplication, i.e., 

0 + 2° ■ j/o • A' + 21 • y, • A' + 22 • y2 ■ X + 23 • y3 ■ X 

=   (EI=O.32
,
'-J/,-)-A' 

=   XV 

Observe that upon completing this process, we have truly verified that the circuit implements 
unsigned integer multiplication. By contrast, BDD-based approaches just show that a circuit 
is equivalent to some (hopefully) "known good" realization of the function. For such a simple 
example, one can readily perform the word-level algebraic manipulation manually. For more 
complex cases, however, we would like our verifier to compose and compare the functions 
automatically. 

3.1.2    Component Verification 

The component partitioning allows us to efficiently represent both their bit-level and word-level 
functions. This allows the test of Equation 3.1 to be implemented directly. As an example, 
consider the adder circuit having bit-level functions given by the *BMD of Figure 2.6, where 
this *BMD is obtained by evaluating BDDs from a gate-level representation of the circuit and 
then translating BDDs into *BMDs. The word-level specification is given by the left-hand 
*BMD of Figure 2.4. In generating the *BMD from the specification we are also incorporating 
the requirement that input words A" and Y have an unsigned binary encoding. Given that the 
output is also to have an unsigned binary encoding, we would use our Apply algorithms to 
convert the bit-level circuit outputs to the word level as: 

P   =   2° • So + 21 • Si + 22 • S2 + 23 • Cout 

We would then compare the *BMD for P to the one shown on the left-hand side of Figure 2.4. 

3.2   Verification System: Arithmetic Circuit Verifier 

Based on *BMDs and hierarchical verification methodology, we have built an Arithmetic 
Circuit Verifier (ACV) to verify integer circuits such as multipliers, dividers, etc. To support 
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Transition 
Layer 

Figure 3.3:   Module hierarchy of 4x4 multiplier. Each module in the transition layer is the 
last module with word-level specifications on the path down from the root. 

the hierarchical verification methodology, we devised a hardware description language, also 
called ACV, to describe circuits and their specifications in a hierarchical manner. Each module 
is composed structurally from other modules and primitive logic gates. In addition, a module 
can be given the word-level specification consisting of definitions of the numeric encodings 
of inputs and outputs, as well as the module functionality in terms of arithmetic expressions 
relating input and output values. 

We use a 4x4 array multiplier to illustrate the ACV language and system. This multiplier 
can be represented by the module hierarchy shown in Figure 3.3. We define the "transition 
layer", shown as the shaded box in Figure 3.3, as the collection of modules which are the 
last modules with word-level specifications on the paths down from the root. Modules in or 
above the transition layer must declare their word-level specifications, as well as their structural 
definitions. Modules below the transition layer just declare their structural definitions. Modules 
in the transition layer abstract from the bit-level, where the structure consists of logic gates 
(sub-module will be evaluated recursively), to a word-level representation, where the structure 
consists of blocks interconnected by bit-vectors encoding numeric values. 

Figure 3.4 shows the ACV description of the top module of a 4x4 array multiplier. The 
definition of a module is encompassed between keywords "MODULE" and "ENDMODULE". 
First, the module name and the names of signals visible from outside of this module must be 
given as shown in the first fine of Figure 3.4. The module is declared as mult A A with three 
signals x, y, and p. Then, the width of these signals are declared in the VAR section. Both x 
and y are declared as 4 bits wide, and p are 8 bits. 

For each module, section INTERNAL and STRUCTURE define the circuit connections among 
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MODULE mt//f_4_4(.r, ij.p) 
VAR p[8],r[4],y[4]; 
ENCODING P = (unsigned) p; 

X = (unsigned).r; 
Y = (unsigned).!/; 

FUNCTION P — X*Y; 
VERIFY P==X*Y; 
ORDERING x,y; 
INTERNAL sl[4],s2[6],s3[7]; 
STRUCTURE       add„stepJO(y[0],x,sl); 

ad(LstepA(y[l],x,sl,s2); 
add _st ep_2(y[2],x ,s2,s3); 
(uULsl ep_3(y[3],x ,s3,p); 

ENDMODULE 

Figure 3.4:   ACV code for Module multAA of a 4x4 multiplier. 

logic gates and sub-modules. The INTERNAL section declares the names and widths of internal 
vector signals used in the STRUCTURE section to connect the circuit. Vector si, .s2 and s3 are 
declared as 4,6 and 7 bits, respectively. There are two types of statements in the STRUCTURE 
section. First, the assignment statements, shown in lines 1, 2, 4, 5 and 6 in the STRUCTURE 
section of Figure 3.6, are used to rename part of a signal vector, or to connect the output of a 
primitive logic gate. Second, the module instantiation statements, shown in the STRUCTURE 
section of Figure 3.4, declare which signals are connected to the referenced modules. Note 
that we do not distinguish inputs from outputs in module instantiation statements and module 
definitions. As we shall see, it is often advantageous to shift the roles of inputs and outputs 
as we move up in the module hierarchy. The ACV program will distinguish them during the 
verification process based on the information given in the specification sections. 

To give the word-level specification for a module, sections ENCODING, FUNCTION, VERIFY 
and ORDERING are required in the module definition. The ENCODING section gives the 
numeric encodings of the signals declared in the VAR section. For example, vector p is 
declared as having an unsigned encoding and its word-level value is denoted by P. The allowed 
encoding types are: unsigned, two's complement, one's complement, and sign-magnitude. The 
FUNCTION section gives the word-level arithmetic expressions for how this module should be 
viewed by modules higher in the hierarchy. For example, if module mult A A were used by a 
higher level module, its function would be to compute output P as the product of inputs A' and 
Y. In general, the variable on the left side of "==" will be treated as output and the variables 
on the right side will be treated as inputs.   The VERIFY section declares the specification 
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which will be verified against its circuit implementation. In the multiplier example, the module 
specification is the same as its function. In other cases, such as the SRT divider example in next 
section, these two may differ to allow a shifting of viewpoints as we move up in the hierarchy. 
The ORDERING section not only specifies the BDD variable ordering for the inputs but also 
defines which signals should be treated as inputs during the verification of this module. The 
variable ordering is very important to verification, because our program does not currently do 
dynamic variable reordering. 

The ACV program proceeds recursively beginning with the top-level module. It performs four 
tasks for each module. First, it verifies the sub-modules if they have word-level specifications. 
Second, it evaluates the statements in the STRUCTURE section in the order of their appearance 
to compute the output functions. For a module in the transition layer, this involves first 
computing a BDD representation of the individual module output bits by recursively evaluating 
the sub-module's statements given in their STRUCTURE sections. These BDDs are then 
converted to a vector of bit-level *BMDs, and then a single word-level *BMD is derived by 
applying the declared output encoding. For a module above the transition layer, evaluation 
involves composing the submodule functions given in their FUNCTION sections. Third, ACV 
checks whether the module specification given in the VERIFY section is satisfied, Finally, it 
checks whether the specification given in the VERIFY section implies the module function 
given in the FUNCTION section. A flag is maintained for each module indicating whether this 
module has been verified. Thus, even if a module is instantiated multiple times in the hierarchy, 
it will be verified only once. 

For example, the verification of the 4-bit array multiplier in Figure 3.4 begins with the veri- 
fication of the four add_step modules. For each one, the structural definition as well as the 
structural definitions it references are evaluated recursively using BDDs to derive a bit-level 
representation of the module output. These BDDs are converted to *BMDs, and then a word- 
level *BMD is derived by computing the weighted sum of the bits. ACV checks whether the 
circuit matches the specification given in its VERIFY section. The specification of addstep 
module i is Out = In + 2' * y * X, where In is a partial sum input (0 for i=0), y is a bit of the 
multiplier and Out is the output of the module. 

Assuming the four addstep modules are verified correctly, ACV derives a *BMD representation 
of the multiplier output. It first creates *BMD variables for the bit vectors x and y (4 each), 
and computes *BMD representations of X and Y by computing weighted sums of these 
bits. It evaluates the addstep instantiations to derive a word-level representation of module 
output. First, it computes si by evaluating the FUNCTION statement Out = y * X of module 
add.stepS) for the bindings y = y0 and X = X. Then it computes s2 by evaluating the 
FUNCTION statement Out = In + 2 * y * X of module addMepA for the bindings In = s\, 
y = 2/i, and X = X. This process continues for the other two modules, yielding a *BMD for 
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Figure 3.5: Block level representation of SRT divider stage from different perspectives. 
(a) The original circuit design, (b) The abstract view of the module, while verifying it. (c) The 
abstract view of the module, when it is referenced. 

P equivalent to P = (((y0 * A') + 2 * Vl * A') + 22 * y2 * A") + 23 * y3 * A. Note that whether 
a module argument is an input or an output is determined by whether it has a binding at the 
time of module instantiation. ACV then compares the *BMD for P to the one computed by 
evaluating A * Y and finds that they are identical. Finally, checking whether the specification 
in the VERIFY section implies the functionality given in the FUNCTION section is trivial for 
this case, since they are identical. 

3.3   Additional Techniques 

In order to verify the integer circuits, which generate more than 1 word-level output such 
as carry-save adders(CSA) and dividers, we developed some techniques within hierarchical 
verification approach. We use radix-4 SRT division as an example to explain several additional 
verification methodologies, and to illustrate the use of these methodologies in ACV language. 

A divider based on the radix-4 SRT algorithm is an iterative design maintaining two words of 
state: a partial remainder and a partial quotient, initialized to the dividend and 0, respectively. 
Each iteration extracts two bits worth of quotient, subtracts the correspondingly weighted value 
of the divider from the partial remainder, and shifts the partial remainder left by 2 bit positions. 
The logic implementing one iteration is shown in Figure 3.5.a, where we do not show two 
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registers storing partial remainder and partial quotient. The inputs are divisor d and partial 
remainder pi} and the outputs are the extracted quotient digit qbi+l (ranging from -2 to 2) and 
the updated partial remainder pi+1. The PD table, used to look up the quotient digits based 
on the truncated values of the divisor and the partial remainder, is implemented in logic gates 
derived from a sum of products form. After the iterations, the set of obtained quotient digits is 
converted into the actual quotient by a quotient conversion circuit. 

First, we prove the correctness of one iteration of the circuit. The specification is given in [36] 
and is shown as Equation 3.2. This specification states that for all legal inputs (i.e., satisfying 
the range constraint) the outputs also satisfy the range constraint, and that the inputs and outputs 
are properly related. This specification captures the essence of the SRT algorithm. 

(SD < 3Pi < SD) -> 

{(SD < 3Pi+1 < SD) A [Pi+1 == 4{Pi - QOi+1 * D)]} (3.2) 

This specification contains word-level function comparisons such as < and == as well as 
Boolean connectives A and ->•. In [30], a branch-and-bound algorithm is proposed to do 
word-level comparison operations for HDDs. It takes two word-level functions and generates 
a BDD representing the set of assignments satisfying the comparison operation. We adapted 
their algorithm for *BMDs to allow ACV to perform the word-level comparisons. Once these 
"predicates" are converted to BDDs, we use BDD operations to evaluate the logic expression. 

If Equation 3.2 is used to verify this module, the running time will grow exponentially with the 
word size, because the time to convert output p,+i in Figure 3.5(a) from a vector of Boolean 
functions into a word-level function grows exponentially with the word size. The reason is that 
pi+x depends on output vector qbi+1 which itself has a complex function. We overcome this 
problem by cutting off the dependence of pi+i on qbi+1 by introducing an auxiliary vector of 
variables ql, shown in Figure 3.5(b). One can view this as a cutting of the connection from 
the PD table to the multiply component in the circuit design. Now, the task of verifying this 
module becomes to prove that Equation 3.3 holds: 

{-SD < 3Pi <SDA QOl+x == Ql) -> 

{(-SD < 3Pi+1 < SD) A [Pi+1 == 4(Pt - Ql * D)]} (3.3) 

In the actual design, the requirement that QOi+\ == Ql is guaranteed by the circuit structure. 
Hence Equation 3.3 is simply an alternate definition of the module behavior. By this method- 
ology, the computing time of verifying this specification is reduced dramatically with a little 
overhead (the computing time of performing QOi+i == Ql and an extra AND operation). 
The major difference between this cutting methodology and the hierarchical partitioning is 
that the latter decomposes the specification into several sub-specifications, but the former only 
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MODULE sristage(p. d, qo, pi) 
VAR qo[3],ql[3],p[9lcl[6lpl[9]; 
EQUIVALENT (qo,ql); 
ENCODING     P = (twocomp) p; 

PI = (twocomp)/) 1; 
D = (unsigned)f/; 
QO = (signmag)go; 
Ql = (signmag)fyl; 

FUNCTION      PI == 4*(P-QO*D); 
VERIFY 

(3*P < S*D & 3*P > -S*D &Ql==QO&D> 2**5) 
-+ (3*P1 < 8*D & 3*F1 > -S*D & PI ==4*(P-Q1*D)); 

ORDERING     ql,p,d; 
INTERNAL      ph [l],dh [4],/ [9] ,n qd[9] ,r [ 10]; 
STRUCTURE   ph =p[2 .. 8]; 

dh = d[l .. 4]; 
pdJable[ph. dh, qo); 
*el = f/o[0]; 
iv2 = qo[l]; 
7i eg = not(f/o[2]); 
shifter(d, ?rl, w2.t); 
nega.ter(t, neg, nqd); 
adder(p, nqd. neg. r); 
leftshiftJ2{r,pl); 

ENDMODULE 

Figure 3.6:   ACV code for Module srtstage. 

introduces auxiliary variables to simplify the computation. We can also apply this methodology 
to verify the iteration stage of such similar circuits as restoring division, restoring square root 
and radix-4 SRT square root. 

Module srtstage, shown in Figure 3.6, implements the function of one SRT iteration for a 
6x6 divider using the ACV language. Vector variables, p, d, ejo and pi in Figure 3.6, represent 
signal vectors, pt, d, cfol+1 and ;Ti+] in Figure 3.5(a), respectively. Their encoding and ordering 
information is given in the relevant sections. Modules s h ifte r and n ego t e r implements module 
multiply in Figure 3.6(a). Since *BMDs can only represent integers, we must scale all numbers 
so that binary point is at the right. We specify one additional condition in the specification: 



33. ADDITIONAL TECHNIQUES 43 

o 
o 

% 
fl> 
to 

o 

Q 

± 
D 

srt_stage 

GO I 
srt_stage 

Ql I 
srt_stage 

G2 J 
i? 

o 
o 

< 
n> 
0) 

o 
3 

* 

± 
D 

srt_stage 

■QO I 
srt_stage 

'Ql I 
srt_stage 

EEJ 
i? 

(b) 

Figure 3.7: Block level representation of a 6 x 6 SRT divider from two different perspec- 
tives, (a) The original circuit design, (b) the abstract view of the module, while verifying 
it. 

that the most significant bit of the divider must be 1, by the term D > 2**5. 

The support for our "cutting" methodology arises in several places. First, vector gl is declared 
in the VAR and ORDERING sections with the same size as qo, and is therefore treated as a 
"pseudo input", i.e., an input invisible to the outside. Then, the equivalence of signals qo and 
ql is declared in the EQUIVALENT section. The original signal qo must appear first in the 
pair. While evaluating the statements in the STRUCTURE section, ACV automatically uses 
ql's value instead of go's value for signal qo once signal qo has been assigned its value. For 
example, all appearances of signal qo after the pd.table instantiation in Figure 3.6 will use 
ql's value (a *BMD Ql using three Boolean variables) instead of its original value (a *BMD 
function of inputs P and D) when evaluating these statements. Finally, the encoding method 
of ql is declared the same as qO and Equation 3.3 is used in the VERIFY section instead of 
Equation 3.2. 

Figure 3.7(a) shows the block level representation of a 6x6 SRT divider. Since module 
srt.stage performs a cycle of SRT division, we instantiate it multiple times, effectively unrolling 
the sequential SRT division into a combinational one, and compose them with another module 
Conversion which takes the set of quotient digits generated from the stages and converts 
them into a quotient vector with an unsigned binary representation. The divider takes two 
inputs P and D, goes through 3 srtstage and 1 Conversion modules, and generates the 
outputs Q and R.   Module Conversion takes a set of quotient digits, generated from the 
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MODULE srt.d.ivJ6j6{p, (I q, r) 
VAR p[6], d[6], q[6], r[9],q0[3],ql[3], </2[3]; 
ENCODING       P = (unsigned) p; 

D = (unsigned) d; 
Q = (unsigned) q; 
R = (twocomp) r; 
QO = (signmag) qO; 
<51= (signmag) <?1; 
Q2 = (signmag) ql; 

FUNCTION       R == 2**6 * P - 4*D*Q; 
VERIFY (3*P < S*D & 3*P > -8*£> & D > 2**5) -> 

((2**6* P)== 4*D*Q + R); 
ORDERING       p, r/, q2.q\.q0; 
INTERNAL        P0[9],pl[9],p2[9]; 
STRUCTURE    ;J0[0 .. 5]= p\ 

7?0[6 .. 8]= 0; 
srtstage(pO. d. qO. pi); 
srtstagc{pl.d, ql.p2); 
srtstage(p2. d, q2. r); 
Convcrsion(q. qO. ql.q2); 

ENDMODULE 

Figure 3.8: ACV description of Module srtJivJß.6. 

srtstages, and converts them into a vector in the unsigned binary form. Assume module 
Conversion takes inputs q0, —, qn, and produces the output q. The specification of this module 
is Q = Qn + 4 * Qn-i + ... + 4" * Qo, where Q and Q, are the word-level representations of q 
and cji, 0 < i < n. 

With the partitioning shown in Figure 3.7(a), we cannot directly apply hierarchical verification, 
because the outputs of module srtstage do not have unique functional definitions. The 
redundant encoding of the quotient digits in the SRT algorithm allows, in several cases, a 
choice of values for the quotient digits. Fortunately, we do know the relation between inputs 
and outputs: PJ+i = 4 * (P, — QOt+\ * D). We exploit the fact that the correctness of the 
overall circuit behavior does not depend on the individual output functions, but rather on their 
relation. Therefore we can apply a technique similar to one used to verify circuits with carry- 
save adders[21] treating the quotient output as an input when this module is instantiated. Figure 
3.5(c) shows this abstract view of the srtstage module when it is referenced. The abstract 
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view of the SRT divider is then changed as shown in Figure 3.7(b), and described in ACV as 
shown in Figure 3.8. The quotient output vectors ql, ql and qO (denoted by Ql, Ql and QO 
for the word-level representation) of three srtstage modules are changed to pseudo inputs 
by declaring them in the VAR, ENCODING and ORDERING sections. With this additional 
information, the circuit is effectively changed from Figure 3.7(a) to Figure 3.7(b) without 
modifying the physical connections. 

Assume both srtstage and conversion modules are verified. During verification of module 
srt-div-6j6, when ACV evaluates the first srtstage statement, vector qO has its word value 
QO and is treated as an input to module srtstage to compute the value of vector pi. Therefore, 
the value of vector pi is 4 * (P - QO * D) and this becomes an input to the second srtstage. 
ACV repeats the same procedure for the other srtstage statements to compute the value of R 
which now depends on P, D, QO, Ql and Q2. It also computes the value of Q, which depends 
on QO, Ql and Q2, from module Conversion. The specification of this 6x6 SRT Radix-4 
divider we verified is: (-SD < 3P < W A D > 2s) -> (P * 26 == 4 * Q * D + R). The 
constraints , -8D <3P <SD and D > 25, required for the first srtstage, specify the input 
range constraints. Under these input constraints, the circuit performs the division, specified by 
the relation P*26 = 4*Q*D + R. Since QO, Ql and Q2 can be arbitrary values, we cannot 
verify the divider's output range constraint: -SD < 3R < SD. It can be deduced manually 
from the initial condition and the input and output constraints of the srtstage modules. 

3.4   Experimental Results 

All of our results were executed on a Sun Sparc Station 10. Performance is expressed as the 
number of CPU seconds and the peak number of megabytes (MB) of memory required. 

Table 3.1 shows the results of verifying a number of multiplier circuits with different word 
sizes. Observe that the computational requirements grow quadratically, caused by quadratical 
growth of the circuit size, except Design "seq" which is linear. The design labeled "CSA" 
is based on the logic design of ISCAS'85 benchmark C6288 which is a 16-bit version of the 
circuit. These results are especially appealing in light of prior results on multiplier verification. 
A brute force approach based on BDDs cannot get beyond even modest word sizes. Yang et 
al [97] have successfully built the OBDDs for a 16-bit multiplier, requiring over 40 million 
vertices. Increasing the word size by one bit causes the number of vertices to increase by a 
factor of approximately 2.87, and hence even more powerful computers will not be able to get 
much beyond this point. 

Compared with other multipliers, the verification of CSA multiplier is slower, because the 
verification of a carry-save adder is slower than a carry-propagate adder. The designs labeled 
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Sizes 16x16 32x32 64x64 128x128 256x256 
CSA 4.68(sec) 20.08 78.55 351.18 1474.55 

0.83(MB) 1.19 2.31 6.34 21.41 
Booth 2.37 8.18 27.47 128.87 535.18 

0.77 1.09 2.12 5.94 20.41 
BitPair 1.90 5.76 15.43 69.68 288.70 

0.74 0.93 1.53 3.56 11.12 
Seq 1.08 2.41 5.30 14.35 36.13 

0.70 0.76 0.96 1.41 2.75 

Table 3.1: Verification Results of Multipliers. Results are shown in seconds and Mega Bytes. 

Sizes 16x16 32x32 64x64 128x128 256x256 
srt-div 16.25(sec) 

1.16(MB) 
23.58 
1.47 

40.40 
2.19 

109.63 
4.47 

398.68 
10.47 

r-div 5.53 
0.71 

26.02 
0.89 

153.13 
1.56 

1131.82 
4.22 

8927.18 
15.34 

r-sqrt 8.35 
0.77 

54.85 
1.12 

320.60 
3.12 

2623.11 
14.97 

20991.35 
98.31 

Table 3.2: Verification Results of Dividers and Square Roots. Results are shown in seconds 
and Mega Bytes. 

"Booth" and "BitPair" are based on the Booth and the modified Booth algorithms, respectively. 
Verifying the BitPair circuits takes less time than the Booth circuits, because it has only half 
the stages. Comparing these results with the results given in [21], we achieve around 3 to 4 
times speedup, because we exploited the sharing in the module hierarchy. 

Design "Seq" is an unrolled sequential multiplier obtained by defining a module corresponding 
to one cycle of operation and then instantiating this module multiple times. The performance 
of Design "Seq" is another example to demonstrate the advantage of sharing in our verification 
methodology. The complexity of verifying this multiplier is linear in the word size, since the 
same stage is repeated many times. 

Table 3.2 shows the computing time and memory requirement of verifying divider and square 
root circuits for a variety of sizes. We have verified divider circuits based on a restoring 
method and the radix-4 SRT method. For the radix-4 SRT divider, the computing time grows 
quadratically, because we exploit the sharing property of the design and apply hierarchical 
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verification as much as we can. For both restoring divide and square root, the computing time 
grows cubically in the word size. This complexity is caused by verifying the subtracter. While 
converting the vector of BDD functions into word-level *BMD function for the output of the 
subtracter, the intermediate *BMD size and operations grow cubically, although, the size of 
final *BMD function is linear. 

3.5   Related Work 

Our approach has to partition the circuits into hierarchical forms. However, some design may 
not have hierarchical structures for us to verify. For example, the optimized design usually is 
in the flattened netlist format. To overcome this constraint, Hamaguchi et al [52] proposed a 
backward substitution method to compute the output of integer multipliers without any circuit 
knowledge. For a 64x64 multiplier, they reported 22,340 seconds of CPU time, while our 
approach only requires 27.47 seconds. 

Clarke et al [30, 33] presented word-level SMV based on BDDs for Boolean functions, HDDs 
for integer functions and a layered backward substitution method (a variant of hamaguchi's 
method) [29]. For integer multipliers, their complexity grows cubically, but the constant 
factor is much smaller than Hamaguchi's. Chen et al [29] have applied word-level SMV to 
verify arithmetic circuits in one of Intel's processors. In this work, floating-point circuits 
were partitioned into several sub-circuits whose specifications can be expressed in terms of 
integer operations, because HDDs can not represent floating-point functions efficiently. Each 
sub-circuits were verified in a flattened manner. They reported 508 seconds to verify a 64 bit 
multiplier and 194 seconds to verify a 64-bit sequential divider on a HP 9000 workstation with 
256MB, which is at least 2.5 times faster than Sun Sparc 10. 

Both Hamaguchi's and layered backward substitution approach have cubical growth for the 
correct multipliers, while our approach has quadratic growth. In general, compared with 
approaches with backward substitution methods, our approach achieves greater speedup for the 
larger circuits. For the incorrect multipliers, both backward substitution methods cannot build 
*BMDs or HDDs for the outputs, because *BMDs or HDDs explodes exponentially in size. 
However, our approach can easily detect the bugs while verifying the lower modules of the 
design. 
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Chapter 4 

Representation for Floating-Point 
Functions 

When applied to verify floating-point circuits, our hierarchical approach with *BMDs has two 
major problems. First, the decision diagram explodes in size, when the output of the rounding 
module is computed from the word-level functions obtained from the previous module of the 
circuit. This problem will be illustrated more detail in Chapter 5. Second, *BMD and/or HDDs 
cannot represented floating-point functions without the use of rational edge weights. Thus, a 
new representation and verification methodology is needed to verify the floating-point circuits 
such as adders and multipliers. In this chapter, we present a representation, multiplicative 
Power HDD (*PHDD), to address the first problem. *PHDDs can represent floating-point 
functions efficiently and can be used to verify the floating-point circuits. 

The rest of this chapter is organized as followings. Section 4.1 illustrates the Hmitations of 
*BMDs and HDDs in representing floating-point functions. The data structure for *PHDDs are 
described in Section 4.2. The *PHDD representations for integer and floating-point functions 
are shown in Section 4.3. Section 4.4 shows experimental results to illustrate the advantages 
of *PHDDs compared with *BMDs. 

4.1    Reasons for A New Diagrams 

To verify floating-point circuits, we must have a word-level diagram that can represents floating- 
point functions efficiently, especially for IEEE floating-point encoding: (- l)si9n ■ 2^x~bias) ■ M, 
where X and M use unsign binary encodings and bias is a constant.   As summarized in 

49 
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Section 1.2.1, many word-level decision diagrams have been proposed to represent word- 
level functions efficiently. However, these diagrams do not have compact representations for 
floating-point functions. 

x   y f 
0   0 1 
0    1 2 
1    0 4 
1    1 8 

(a) 

/ 

:   3 

(c) 

Figure 4.1: An integer function with Boolean variables, / = l + y + 3.r + 3.ry, is represented 
by (a) Truth table, (b) BMDs, (c) *BMDs, (d) HDDs with Shannon decompositions. The 
dashed-edges are 0-branches and the solid-edges are the 1-branches. The variables with 
Shannon and positive Davio decomposition types are drawn in vertices with thin and thick 
lines, respectively. 

We used Figure 4.1 and 4.2 to illustrate the limitations of BMDs and HDDs. Figure 4.1 show an 
integer function / with Boolean variables x and y represented by a truth table, BMDs, *BMDs, 
and HDDs with Shannon decompositions (also called MTBDD [34]). Observe that if variables 
x and y are viewed as bits forming 2-bit binary number, X=y+2x, then the function / can be 
rewritten as / = 2(y+2j' = 2A. In our drawing, the variables with Shannon and positive Davio 
decomposition types are drawn in vertices with thin and thick lines, respectively. The dashed 
(solid) line from a vertex with variable x points to the vertex represented function fa, fj, and /,. 
(fx, fsr and fsj) for Shannon, positive Davio and negative Davio decompositions, respectively. 
Figure 4.1.b shows the BMD representation. To construct this graph, we apply Equation 2.2 
to function / recursively. First, with respect to variable x, we can get ./V = 1 + y, represented 
as the graph of the dashed-edge of vertex x, and fsx = 3 + 3y, represented by the solid branch 
of vertex x. Observe that f$.r can be expressed by 3 x f¥. By extracting the factor 3 from 
fsx, the graph became Figure 4.I.e. This graph is called a Multiplicative BMD (*BMD) which 
extracts the greatest common divisor (GCD) from both branches. The edge weights combine 
multiplicatively. The HDD with Shannon decompositions can be constructed from the truth 
table. The dashed branch of vertex x is constructed from the first two entries of the table, and 
the solid branch of vertex .T is constructed from the last two entries of the table. 
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Observe that HDDs with Shannon decompositions and BMDs grow exponentially for this type 
of functions. *BMDs can represent them efficiently, due to the edge weights. However, *BMDs 
and HDDs cannot represent the functions as / = 2x~bms, where bias is a constant, because 
they can only represent integer functions without introducing the rational numbers in the edges 
or leaf nodes as shown in Figure 4.2. However, the overhead of storing and manipulating 
the rational numbers in the edges or leaf nodes make them less attractive for representing 
floating-point functions. 

/ 

1/4 

: fT 

_L_ 

(a) 

Figure 4.2: *BMDs and HDDs for function / = 2X~2, where X = x + 2y. (a) *BMDs, (d) 
HDDs. 

4.2   The *PHDD Data Structure 

In this section, we introduce a new data structure, Multiplicative Power Hybrid Decision 
Diagrams (*PHDDs), to represent functions that map Boolean vectors to integer or floating- 
point values. This structure is similar to that of HDDs, except that they use power-of-2 edge 
weights and negation edges. The power-of-2 edge weights allow us to represent and manipulate 
functions mapping Boolean vectors to floating-point values. Negation edges can further reduce 
graph size by as much as a factor of 2. We assume that there is a total ordering of the variables 
such that the variables are tested according to this ordering along any path from the root to a 
leaf. Each variable is associated with its own decomposition type and all nodes of that variable 
use the corresponding decomposition. 
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4.2.1   Edge Weights 

*PHDDs use three of HDD's six decompositions as expressed in Equation 2.5. Similar to 
*BMDs, we adapt the concept of edge weights to *PHDDs. Unlike *BMD edge weights, we 
restrict our edge weights to be powers of a constant c. Thus, Equation 2.5 is rewritten as: 

(«>,/>   = 

C
U
'-(((1-.T)./F + .T-/X 

CW-(fr + .T-fSr) 
C" - (fr + (1 - X) ■ fST) 

[Shannon) 
[Positive Dario) 
[Negative Davio) 

where (w, f) denotes cu' x /. In general, the constant c can be any positive integer. Since the 
base value of the exponent part of the IEEE floating-point format is 2, we will consider only c = 
2 for the remainder of the paper. Observe that w can be negative, i.e., we can represent rational 
numbers. The power edge weights enable us to represent functions mapping Boolean variables 
to floating-point values without using rational numbers in our representation. 

wl>wO wO=wl wl<wO 

C=> 

wO 

G) 
V S^ 

\ / / 
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Figure 4.3: Normalizing the edge weights. 

In addition to the HDD reduction rules [30], we apply several edge weight manipulating rules 
to maintain the canonical form of the resulting graph. Let wO and irl denote the weights at 
branch 0 and 1 respectively, and /0 and f\ denote the functions represented by branch 0 and 1. 
To normalize the edge weights, we chose to extract the minimum of the edge weight wO and 
w\. This is a much simpler computation than the GCD of integer *BMDs or the reciprocal 
of rational *BMDs [20]. Figure 4.3 illustrates the manipulation of edge weights to maintain a 
canonical form. The first step is to extract the minimum of n0 and icl. Then, the new edge 
weights are adjusted by subtracting the minimum from wO and ivl respectively. A node is 
created with the index of the variable, the new edge weights, and pointers to /o and f\. Base on 
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the relation of wO and wl, the resulting graph is one of three graphs in Figure 4.3. Note that at 
least one branch has zero weight. In addition, the manipulation rule of the edge weight is the 
same for all of the three decomposition types. In other words, the representation is normalized 
if and only if the following holds: 

• The leaf nodes can only have odd integers or 0. 

• At most one branch has non-zero weight. 

• The edge weights are greater than or equal to 0, except the top one. 

4.2.2   Negation Edge 

Negation edges are commonly used in BDDs [9] and KFDDs [42], but not in *BMDs, HDDs 
and K*BMDs. Since our edge weights extract powers-of-2 which are always positive, negation 
edges are added to *PHDDs to increase sharing among the diagrams. In *PHDDs, the negation 
edge of function / represents the negation of /. Note that -/is different from J for Boolean 
functions. 

Negation edges allow greater sharing and make negation a constant computation. In the 
*PHDD data structure, we use the low order bit of each pointer to denote negation, as is done 
with the complement edges of BDDs. To maintain a canonical form, we must constrain the 
use of negation edges. Unlike KFDDs [42], where Shannon decompositions use a different 
method from positive and negative Davio decompositions, *PHDDs use the same method for 
manipulating the negation edge for all three decomposition types. *PHDDs must follow these 
rules: the zero edge of every node must be a regular edge, the negation of leaf 0 is still leaf 0, 
and leaves must be nonnegative. These guarantee a canonical form for *PHDDs. 

4.3   Representation of Word-Level Functions 

*PHDDs can effectively represent word-level functions that map Boolean vectors into integer 
or floating-point values. We first show that *PHDDs can represent integer functions with 
comparable sizes to *BMDs. Then, we show the *PHDD representation for floating-point 
numbers. 
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4.3.1 Representation of Integer Functions 

*PHDDs, similar to *BMDs, can provide a concise representation of functions which map 
Boolean vectors to integer values. Let .f represent a vector of Boolean variables: x„_i,..., xi, 
x0. These variables can be considered to represent an integer A' according to some encoding, 
e.g., unsigned binary or two's complement. Figure 4.4 illustrates the *PHDD representations 
of several common encodings for integers. In our drawing of *PHDDs, we indicate the edge 
weight and leaf node in square boxes with thick and thin lines, respectively. Edge weight i 
represents 2' and Unlabeled edges have weight 0 (2°). An unsigned number is encoded as a 
sum of weighted bits. The *PHDD representation has a simple linear structure where the leaf 
values are formed by the corresponding edge weight and leaf 1 or 0. For representing signed 
numbers, we assume .T„_I is the sign bit. The two's complement encoding has a *PHDD 
representation similar to that of unsigned integers, but with bit ;r„_i having weight -2"_1 

represented by the edge weight ?? - 1 and the negation edge. Sign-magnitude integers also 
have *PHDD representations of linear complexity, but with the constant moment with respect 
to xn-i scaling the remaining unsigned number by 1, and the linear moment scaling the number 
by -2 represented by edge weight 1 and the negation edge. In evaluating the function for 
xn-i = 1, we would add these two moments, effectively scaling the number by -1. Note that 
it is more logical to use Shannon decomposition for the sign bit. 

Figure 4.4 also illustrates the *PHDD representations of several common arithmetic operations 
on integer data. Observe that the sizes of the graphs grow only linearly with the word size n. 
Integer addition can be viewed as summing a set of weighted bits, where bits x ,• and y; both have 
weight X represented by edge weight i. Integer multiplication can be viewed as summing a set 
of partial products of the form xt2'Y. In summary, while representing the integer functions, 
*PHDDs with positive Davio decompositions usually will get the most compact representation 
among these three decompositions. 

4.3.2 Representation of Floating-Point Numbers 

Let us consider the representation of floating-point numbers by IEEE standard 754. For ex- 
ample, double-precision numbers are stored in 64 bits: 1 bit for the sign (,S,), 11 bits for the 
exponent (EX), and 52 bits for the mantissa (A). The exponent is a signed number represented 
with a bias (B) 1023. The mantissa represents a number less than 1. Based on the value of the 
exponent, the IEEE floating-point format can be divided into four cases: 

{-if* x LA x 2EX'B    If 0 < EX < All 1   {normal) 
(-If1 x 0.A x 2X~B       If EX = 0 (denormal) 
NaN If EX = All 1 & A + 0 
(-If- x oo // EX = All 1 & A = 0 
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Two's Complement Sign-Magnitude X+Y X*Y 

Figure 4.4: *PHDD Representations of Integers and Integer operations.    Each variable 
uses positive Davio decomposition. The graphs grow linearly with word size. 
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*PHDDs do not handle infinity and NaN (not a number) cases in the floating-point representa- 
tion. Instead, assume they are normal numbers. 

Figure 4.5 shows *PHDD representations for 2EX and 2EX ~B using different decompositions. 
To represent function cEX (in this case c — 2), *PHDDs express the function as a product 
of factors of the form c2'tx' = (c2' )er". In the graph with Shannon decompositions, a vertex 
labeled by variable e,r, has outgoing edges with weights 0 and c2' both leading to a common 
vertex denoting the product of the remaining factors. But in the graph with positive Davio 
decompositions, there is no sharing except for the vertices on the layer just above the leaf nodes. 
Observe that the size of *PHDDs with positive Davio decomposition grows exponentially in the 
word size while the size of *PHDDs with Shannon grows linearly. Interestingly, *BMDs have a 
linear growth for this type of function, while *PHDDs with positive Davio decompositions grow 
exponentially. To represent floating-point functions symbolically, it is necessary to represent 
2EX~B efficiently, where B is a constant. *PHDD can represent this type of functions, but 
*BMDs, HDDs and K*BMDs cannot represent them without using rational numbers. 

ex 

tEX EX 
(a) 2    with Davio Positive (b) 2     with Shannon 

EX-B 
(c) 2        with Shannon 

Figure 4.5: *PHDD Representations of 2EX and 2EX  B. The graph grows linearly in the 
word size with Shannon, but grows exponentially with positive Davio. 

Figure 4.6 shows the *PHDD representations for the floating-point encoding, where EX has 3 
bits, X has 4 bits and the bias i? is 3. The sign Sr and ex variables use Shannon decomposition, 
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while variables x use positive Davio. Figure 4.6.a shows the *PHDD representation for the 
sign bit (-l)Sx. When Sx is 0, the value is 1; otherwise, the value is -1 represented by the 
negation edge and leaf node 1. Figure 4.6.b shows the *PHDD representation for the exponent 
part 2EX~3. The graph is more complicated than Figure 4.5.C, because, in the floating-point 
encoding, when EX = 0, the value of the exponent is 1 - B, instead of -B. Observe 
that each exponent variable, except the top variable ex2, has two nodes: one to represent the 
denormal number case and another to represent normal number case. Figure 4.6.c shows the 
representation for the mantissa part 0.X obtained by dividing X by 2-3. Again, the division 
by powers of 2 requires just adding the edge weight on top of the original graph. Figure 4.6.d 
shows the representation for the mantissa part 1.A' which is the sum of 0.A' and 1. The weight 
(2-3) of the least significant bit is extracted to the top and the leading bit 1 is represented by the 
path with all variables set to 0. Finally, Figure 4.6.e shows the *PHDD representation for the 
complete floating-point encoding. Observe that negation edges reduce the graph size by half. 
The outlined region in the figure denotes the representation for denormal numbers. The rest 
of the graph represents normal numbers. Assume the exponent is n bits and the mantissa is m 
bits. Note that the edge weights are encoded into the node structure in our implementation, but 
the top edge weight requires an extra node. It can be shown that the total number of *PHDD 
nodes for the floating point encoding is 2(n + m) + 3. Therefore, the size of the graph grows 
linearly with word size. In our experience, it is best to use Shannon decompositions for the 
sign and exponent bits, and positive Davio decompositions for the mantissa bits. 

4.3.3   Floating-Point Multiplication and Addition 

This section presents floating-point multiplication and addition based on *PHDDs. Here, we 
show the representations of these operations before rounding. In other words, the resulting 
*PHDDs represent the precise results of the floating-point operations. For floating-point 
multiplication, the size of the resulting graph grows linearly with the word size. For floating- 
point addition, the size of the resulting graph grows exponentially with the size of the exponent 
part. 

Let Fx = (-1)5* x vx.X x 2EX~B and FY = (-l)s» x vy.X x 2EY~B, where vx (vy) is 
0 if EX (EY) = 0, otherwise, vx (vy) is 1. EX and EY are n bits, and X and Y are m 
bits. Let the variable ordering be the sign variables, followed by the exponent variables and 
then the mantissa variables. Based on the values of EX and EY, Fx x FY can be written as: 
(_l)S*©s„ x 2~2Bx 
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(a) Sign: (-1) (b) 2        with Shannon 

denormal 

(c) Mantissa: O.X (d) Mantissa: l.X (e) Floating Point Encoding 

Figure 4.6: Representations of floating-point encodings. 
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Figure 4.7: Representation of floating-point multiplication. 
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21 x 21 x (0.A x 0.1') Case 0 EX = OEY = 0 
21 x 2EY x (0.A x 1.1') Case 1 EX = OEY ^0 
2EX X21 x (LA' xO.l') Case 2 EX ± 0 EY = 0 
2EX X2EY x (i.x x 1.1') Case 3 EX^OEY /o 

Figure 4.7 illustrates the *PHDD representation for floating-point multiplication. Observe that 
two negation edges reduce the graph size to one half of the original size. When EX = 0, the 
subgraph represents the function 0.A x vy.Y x 2E) . When EX ^ 0, the subgraph represents 
the function LA' x vy.Y x 2EY. The size of exponent nodes grows linearly with the word size 
of the exponent part. The lower part of the resulting graph shows four mantissa products(from 
left to right): A x 1', A x (23 + 1), (23 + A) x Y, (23 + A) x (23 + Y). The first and 
third mantissa products share the common sub-function Y shown by the solid rectangles in 
Figure 4.7. The second and fourth products share the common sub-function 23 + Y shown by 
the dashed rectangles in Figure 4.7. In [27], we have proved that the size of the resulting graph 
of floating-point multiplication is 6( n + m) + 3 with the variable ordering given in Figure 4.7, 
where n and m are the number of bits in the exponent and mantissa parts. 

0.X-   2'1.X   ti.X    0.X-    0.X-    2»1.X  l.X-    l.X      l.X-    4«1.X  2«'l.X OX      l.X-    4'l.X  OX 
■0.Y   2*1.Y -0.Y      -0.Y   l.Y     4'I.Y -l.Y    2*1.Y -0.Y    2*1.Y -0.Y     -l.Y   -0.Y    4*1 Y -l.Y     -O.Y 

Figure 4.8: Representation of floating-point addition. For simplicity, the graph only shows 
sign bits, exponent bits and the possible combinations of mantissa sums. 

For floating-point addition, the size of the resulting graph grows exponentially with the size of 
the exponent part. In Appendix 8, we have proved that the number of distinct mantissa sums of 
Fx + Fy is 2"+3 - 10, where n is the number of bits in the exponent part. Figure 4.8 illustrates 
the *PHDD representation of floating-point addition with two exponent bits for each floating- 
point operand. Observe that the negation edge reduces the graph size by half. According to 
the sign bits of two words, the graphs can be divided into two sub-graphs: true addition and 
true subtraction which represent the addition and subtraction of two words, respectively. There 
is no sharing among the sub-graphs for true addition and true subtraction. In true subtraction, 
l.X - l.Y has the same representation as 0.A' - 0.1'. Therefore, all LA' - 1.1' entries are 
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replaced by O.X - O.Y. Since the number of distinct mantissa sums grows exponentially with 
the number of exponent bits, it can be shown that the total number of nodes grows exponentially 
with the size of exponent bits and grows linearly with the size of the mantissa part. Readers can 
refer to [27] for a detailed discussion of floating-point addition, floating-point subtraction can 
be performed by the negation and addition operations. Therefore, it has the same complexity 
as addition. 

In our experience, the sizes of the resulting graphs for multiplication and addition are hardly 
sensitive to the variables ordering of the exponent variables. They exhibit a linear growth 
for multiplication and exponential growth for addition for almost all possible ordering of the 
exponent variables. It is more logical to put the variables with Shannon decompositions on the 
top of the variables with the other decompositions. 

4.4   Experimental Results 

We have implemented *PHDD with basic BDD functions and applied it to verify arithmetic 
circuits. The circuit structure for four different types of multipliers are manually encoded in 
a C program which calls the BDD operations as well as *BMD or *PHDD operations. Our 
measurements are obtained on Sun Sparc 10 with 256 MB memory. 

4.4.1 Integer Multipliers 

Table 4.1 shows the performance comparison between *BMD and *PHDD for different integer 
multipliers with different word sizes. For the CPU time, the complexity of *PHDDs for the 
multipliers still grows quadratically with the word size. Compared with *BMDs, *PHDDs 
are at least 6 times faster, since the edge weight manipulation of *PHDDs only requires 
integer addition and subtraction, while *BMDs require a multiple precision representation for 
integers and perform costly multiple precision multiplication, division, and GCD operations. 
While increasing the word size, the *PHDD's speedup is increasing, because *BMDs require 
more time to perform multiple precision multiplication and division operations. Interestingly, 
*PHDDs also use less memory than *BMDs, since the edge weights in *BMDs are explicitly 
represented by extra nodes, while *PHDDs embed edge weights into the node structure. 

4.4.2 Floating-Point Multipliers 

To perform floating-point multiplication operations before the rounding stage, we introduced 
an adder to perform the exponent addition and logic to perform the sign operation in the C 
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Circuits CPU Time (Sec.) Memory(MB) 
16 64 256 16 64 256 

Add-Step *BMD 1.40 15.38 354.38 0.67 0.77 1.12 
*PHDD 0.20 2.24 39.96 0.11 0.18 0.64 

Ratio 7.0 6.8 8.9 6.0 4.3 1.8 
CSA *BMD 1.61 26.91 591.70 0.67 0.80 2.09 

*PHDD 0.25 3.45 50.72 0.14 0.30 0.88 
Ratio 6.4 7.8 11.7 4.8 2.7 2.4 

Booth *BMD 2.05 34.09 782.20 0.70 0.86 1.84 
*PHDD 0.21 2.97 62.56 0.14 0.30 1.26 
Ratio 9.7 11.5 12.5 5.0 2.9 1.5 

Bit-Pair *BMD 1.21 17.35 378.64 0.70 0.86 2.34 
*PHDD 0.20 2.17 36.10 0.15 0.33 1.33 

Ratio 6.0 8.0 10.5 4.7 2.6 1.8 

Table 4.1: Performance comparison between *BMD and *PHDD for different integer 
multipliers. Results are shown for three different words. The ratio is obtained by dividing the 
result of *BMD by that of *PHDD. 

Circuits CPU Time (Sec.) Memory(MB) 
16       64       256 16       64      256 

Add-Step 0.24    2.29    39.77 0.13    0.18    0.65 
CSA 0.29    3.08    53.98 0.14    0.30    0.88 
Booth 0.25    3.85    67.38 0.16    0.30    1.26 

Bit-Pair 0.21    2.10    38.54 0.15    0.33    1.33 

Table 4.2: Performance for different floating-point multipliers. Results are shown for three 
different mantissa word size with fixed exponent size 11. 
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program. Table 4.2 shows CPU times and memory requirements for verifying floating-point 
multipliers with fixed exponent size 11. Observe that the complexity of verifying the floating- 
point multiplier before rounding still grows quadratically. In addition, the computation time is 
very close to the time of verifying integer multipliers, since the verification time of an 11-bit 
adder and the composition and verification times of a floating-point multiplier from integer 
mantissa multiplier and exponent adder are negligible. The memory requirement is also similar 
to that of the integer multiplier. 

4.4.3   Floating-Point Addition 

Exponent 

Bits 
No. of Nodes CPU Time (Sec.) Memory (MB) 
23 52 23    52 23 52 

4 4961 10877 0.2    0.7 0.4 0.7 
5 10449 22861 0.7     1.3 0.7 1.1 
6 21441 46845 1.1     3.5 1.1 2.0 
7 43441 94829 2.7     6.9 1.9 3.8 
8 87457 190813 7.2    16.8 3.6 7.5 
9 175505 382797 15.0    41.3 7.2 14.8 
10 351617 766781 33.4   103.2 14.3 29.5 
11 703857 1534765 72.8   262.4 26.5 54.9 
12 1408353 3070749 163.2   573.7 54.1 110.9 
13 2817361 6142733 398.3   1303.8 112.5 226.0 

Table 4.3: Performance for floating-point additions. Results are shown for three different 
exponent word size with fixed mantissa size 23 and 52 bits. 

Table 4.3 shows the performance measurements of precise floating-point addition operations 
with different exponent bits and fixed mantissa sizes of 23 and 52 bits, respectively. Both 
the number of nodes and the required memory double, while increasing one extra exponent 
bit. For the same number of exponent bits, the measurements for the 52-bit mantissa are 
approximately twice the corresponding measurements for the 23-bit mantissa. In other words, 
the complexity grows linearly with the mantissa's word size. Due to the cache behavior, the 
CPU time is not doubling (sometimes, around triple), while increasing one extra exponent bit. 
For the double precision of IEEE standard 754 (the numbers of exponent and mantissa bits are 
11 and 52 respectively), it only requires 54.9MB and 262.4 seconds. These values indicate the 
possibility of the verification of an entire floating-point adder for IEEE double precision. For 
IEEE extended precision, floating-point addition will require at least 226.4 x 8 = 1811.2MB 
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memory.   In order to verify IEEE extended precision addition, it is necessary to avoid the 
exponential growth of floating-point addition. 

4.5    Related Work 

The major difference between *PHDD and the other three diagrams is in their ability to represent 
functions that map Boolean variables into floating-point values and their use of negation edges. 
Table 4.4 summarizes the differences between them. 

Features *PHDD *BMD HDD K*BMD 
Additive weight 

Multiplicative weight 
Number of decompositions 

Negation edge 

No 
Powers of 2 

3 
Yes 

No 
GCD 

1 
No 

No 
No 
6 

No 

Yes 
GCD 

3 
No 

Table 4.4: Differences among four different diagrams. 

Compared to *BMDs [21], *PHDDs have three different decomposition types and a different 
method to represent and extract edge weights. These features enable *PHDDs to represent 
floating-point functions effectively. *BMD's edge weights are extracted as the greatest common 
divisor (GCD) of two children. In order to verify the multiplier with a size larger than 32 bits, 
*BMDs have to use multiple precision representation for integers to avoid the machine's 32- 
bit limit. This multiple precision representation and the GCD computation are expensive for 
*BMDs in terms of CPU time. Our powers of 2 method not only allows us to represent 
the floating-point functions but also improves the performance compared with *BMD's GCD 
method. 

Compared with HDDs having six decompositions [30], *PHDDs have only three of them. In 
our experience, these three decompositions are sufficient to represent floating-point functions 
and verify floating-point arithmetic circuits. The other three decomposition types in HDDs 
may be useful for other application domains. Another difference is that *PHDDs have negation 
edges and edge weights, but HDDs do not. These features not only allow us to represent the 
floating-point functions but also reduce the graph size. 

*PHDDs have only multiplicative edge weights, while K*BMDs [41] allow additive and mul- 
tiplicative weights at the same time. The method of extracting the multiplicative weights is 
also different in these two representations. *PHDDs extract the powers-of-2 and choose the 
minimum of two children, but K*BMDs extract the greatest common divisor of two children 
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like *BMDs. The additive weight in K*BMDs can be distributed down to the leaf nodes in 
*PHDD by recursively distributing to one or two branches depending on the decomposition 
type of the node. In our experience, additive weights do not significantly improve the sharing 
in the circuits we verified. The sharing of the additive weight may occur in other application 
domains. 
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Chapter 5 

Extensions to Word-Level SMV 

In Chapter 3, we presented a *BMD-based hierarchical verification approach for verification 
of integer circuits. *PHDDs were presented in Chapter 4 to provide a compact representation 
for integer and floating-point functions. Can we use *PHDDs in a hierarchical verification 
approach, similar to the one described in Chapter 3, to verify floating-point circuits such as 
adders? In this chapter, we will first discuss why *PHDD-based hierarchical verification is 
not suitable for floating-point circuits. We must either verify them in a flattened manner using 
pure *PHDDs or in a hierarchical manner using *PHDDs and a theorem prover. We prefer the 
former approach, because it can be fully automatic. Word-level SMV, introduced by Clarke 
et al [33], verifies integer circuits in a flattened manner and uses HDDs to represent integer 
functions. Since *PHDDs improve on HDDs, we integrate *PHDDs into word-level SMV for 
verification of floating-point circuits and develop several methodologies and additional *PHDD 
algorithms to enable the verification of floating-point circuits in a flattened manner. 

The remainder of this chapter is organized as follows. Section 5.1 illustrates the drawbacks of 
*BMD-based hierarchical verification. Section 5.2 discusses word-level SMV with *PHDDs 
and two additional techniques for verification of floating-point circuits. Two additional *PHDDs 
algorithms are presented in Section 5.3. 

5.1    Drawbacks of *BMD-Based Hierarchical Verification 

In Chapter 3, we described our hierarchical verification method based on *BMDs to verify 
integer circuits such as multipliers and dividers. One of the main drawbacks of this approach is 
that the design must have a hierarchical form. From our experience, industrial designs usually 
do not have the module boundaries needed by our hierarchical verification approach. Since our 

67 
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approach has to partition the circuits into hierarchical modules, two circuit designs with the 
same functionality (e.g., integer multipliers based on adder-step and booth-encoding) can yield 
to two different hierarchical forms. Thus, the verification method for one circuit design cannot 
be reused directly on another design. 

xs xe Xm 
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r      Y,  Yn, s       em 

\\\ 

Sign, Mantissa and 
Exponent operations 

< 
T         T       LT„ 

Rounding 

' M Re I«« 
Figure 5.1: Block Diagrams of floating-point circuits 

Another drawback is that our hierarchical verification approach cannot be easily extended to 
verify floating-point circuits, even using *PHDDs. The problem is caused by the rounding 
module in the floating-point circuits. Usually, floating-point circuits can be partitioned into two 
parts: the rounding module and the circuits before the rounding module. Figure 5.1 shows this 
partition of floating-point circuits, where Xs, Xt,Xm and Ys, Y(,Ym are the sign, exponent and 
mantissa bits of inputs A' and V", respectively. TS,T(, Tm and Rs, Rm, Rm are the sign, exponent 
and mantissa bits of the intermediate result T, generated from the circuit before rounding, and 
the final result R after rounding, respectively. Usually, the number of bits in Tm is larger than 
Xm. Rm has the same size as Xm. The lower bits of Tm are used in rounding module to 
perform rounding operation. The decision diagrams explode in size during the composition of 
specifications in the rounding module, when the output of the rounding module is computed 
from the word-level functions obtained from the previous module of the circuit. 

We use a floating-point multiplier with the round-to-nearest mode as an example to illustrate 
this problem in more detail. Assume the size of Tm is 2???, where m is the size of A',„. 
Figure 5.2 shows the bit vectors Tm and Rm for the mantissa, where Tm is composed of 
(tim-\,tim-2, —,h,to) and Rm is composed of (rTO_1?rm_2, ...,ri,r0).   When t2m-\=0, the 
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Figure 5.2: Bit vectors of Tm and #n 

rounding circuits use bit im_i (denoted L0) and vector 7)0=(£m-2, ...,t0) to decide whether 1 
should be added into vector ThQ = (t2m-2, —,tm, tm_i). When t2m-i=l, the rounding circuits 
use bit tm (denoted Lx) and vector Tn=(tm-i,..., t0) to decide whether 1 should be added into 
vector Th\ = (t2m-i,...,tm+i,tm). Tm, Rm, Th0, Ti0, Th\ and Tn are encoded as unsigned 
integers. The specification for the mantissa output Rm can be written as Equation 5.1: 

Rr, 

Tm hm-i = 0 & \roundo 
Tho + 1 hm-i = 0 & roundo 
Thi hm-i = 1 & Iroundi 
Thi + 1 hm-i = 1 & roundi 

(5.1) 

where ! represent Boolean complement, roundQ is (T/0 > 
and roundi is (Th0 > 2m~l) V (Li == 0 A Tn == 2m~l 

> 2m- 

)• 

2)V(L0==OAr,o==2m-2) 

Since Tm is represented as a word-level function generated from the module before rounding in 
our hierarchical approach, L0, L\, Th0, Tt0, Th\ andTn must be computed from Tm. For example, 
Thi is obtained from Tm/2m and Li is obtained from Thi%2. All these division and modular 
operations many grow exponentially. The BDDs for Li=0 and L0=0 grows exponentially with 
the value of m, because these are the middle bits of mantissa multiplier [14]. In our experience, 
we could not generate them when m > 16. 

Because of these drawbacks, we decided to verify floating-point circuits in a flattened manner. 
Word-level SMV [33] is designed to verify circuits in the flattened manner. Thus, we improved 
word-level SMV by integrating *PHDDs and incorporating several techniques described in 
the rest of this chapter. The main advantage of this approach is that we can provide reusable 
specifications for the floating-point circuits such as adders and converters and we can make the 
verification process automatic. 
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5.2   Word-Level SMV with *PHDDs 

Model checking is a technique to determine which states satisfy a given temporal logic formula 
for a given state-transition graph. In SMV [75], BDDs are used to represent the transition 
relations and set of states. The model checking process is performed iteratively on these 
BDDs. SMV has been widely used to verify control circuits in industry, but for arithmetic 
circuits, particularly for ones containing multipliers, the BDDs grows too large to be tractable. 
Furthermore, expressing desired behavior with Boolean formulas are not appropriated. 

To verify arithmetic circuits, word-level SMV [33] with HDDs extended SMV to handle word 
level expressions in the specification formulas. In word-level SMV, the transition relation as 
well as those formulas that do not involve words are represented using BDDs. HDDs are used 
only to compute word-level expressions such as addition and multiplication. When a relational 
operation is performed on two HDDs, a BDD is used to represent the set of assignments that 
satisfies the relation. The BDDs for temporal formulas are computed in the same way as in 
SMV. For example, the evaluation the formula AG(R — A + B), where R, A and B are 
word-level functions and AG is a temporal operator, is performed by first computing the HDDs 
for R, A, B and A + B, then generating BDDs for the relation R = A + B, and finally applying 
the AG operator to these BDDs. The reader can refer to [33] for the details of word-level SMV. 
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Figure 5.3: Horizontal division of a combinational circuit, 
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We have integrated *PHDDs into word-level SMV and introduced relational operators for 
floating-point numbers. As in word-level SMV, only the word-level functions are represented 
by *PHDDs and the rest of the functions are represented by BDDs. 

Zhao's thesis [99] describes the layering backward substitution, a variant of Hamaguchi's 
backward substitution approach [52], although the public released version of word-level SMV 
does not implement this feature. We have implemented this feature in our system. The main 
idea of layering backward substitution is to virtually cut the circuit horizontally by introducing 
auxiliary variables to avoid the explosion of BDDs while symbolically evaluating bit level 
circuits. Figure 5.3 shows a horizontal division of a combinational circuit with primary inputs 
x0, • • •, xm and outputs j/o, • • •, yn- For 0 < i < n, m = fi(xo,..., xm) where /,■ is a Boolean 
function, but it may not be feasible to be represented as a BDD. The circuit is divided into 
several layers by declaring some of the internal nodes as auxiliary variables. In this example, 
Vi = fu(zo, ■ • ■ i Zk); Zi = f2i(w0, ...,wi); and Wi = f3i(x0,...,xm). Since each fa is 
simpler than /4, the BDD sizes to represent them are generally much smaller. When we try to 
compute *PHDD representation of the word (y0,..., y„) in terms of the variables x0,...,xm, 
we first compute the *PHDD representation of the word in terms of variables zo,...,Zk as 
F = J2fLo 2! x fu(zo,..., Zk). Then we replace each zu one at a time, by fn{wo,..., wi). 
After this, we have obtained the *PHDD representation for the word in terms of variables 
w0, — ivi. Likewise, we can replace each w{ by /3,(x0,..., xn). In this way, the *PHDD 
representation of the word in terms of primary input can be computed without building BDDs 
for each output bit. 

The drawback of the backward substitution is that the *PHDDs may grow exponentially during 
the substitution process, since the auxiliary variables may generalize the circuit behavior for 
some regions. For example, suppose that the internal nodes zk and zk-\ under the original 
circuit have the relation that both of them can not be 0 at the same time and that the circuit of 
region 1 can only handle this case. After introducing the auxiliary variables, variables zk and 
Zk-\ can be 0 simultaneously. Hence, the word-level function F represents a function more 
general than the original circuit of region 1. This generalization may cause the *PHDD for F 
to blowup. 

5.2.1    Conditional Symbolic Simulation 

To partially solve this problem, we introduced conditional symbolic simulation into word-level 
SMV. Symbolic simulation [19] performs the simulation with inputs having symbolic values 
(i.e., Boolean variables or Boolean functions). The simulation process builds BDDs for the 
circuits. If each input is a Boolean variable, this approach may cause the explosion of BDD 
sizes in the middle of the process, because it tries to simulate the entire circuit for all possible 
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inputs at once. The concept of conditional symbolic simulation is to perform the simulation 
process under a restricted condition, expressed as a Boolean function over the inputs. 

In [63], Jain and Gopalakrishnan encoded the conditions together with the original inputs as new 
inputs to the symbolic simulator using a parametric form of Boolean expressions. However, 
this approach is difficult to integrate into word-level SMV. Thus, we propose another approach 
to integrate conditional symbolic simulation into word-level SMV. Our approach is to apply the 
conditions directly during the symbolic simulation process. Right after building the BDDs for 
the output of each logic gate, the conditions are used to simplify the BDDs using the restrict [39] 
algorithm. Then, the simplified BDDs are used as the input function for the gates connected to 
this one. This process is repeated until the outputs are reached. This approach can be viewed 
as dynamically extracting the circuit behavior under the specified condition without modifying 
the actual circuit. 

Mx<My 
d 

E   - E x      ^y 

E   < E x ^     y 

Figure 5.4: The compare unit in floating-point adders. 

We use the following example to illustrate our conditional symbolic simulation process. Fig- 
ure 5.4 shows the circuit for the compare unit in floating-point adders. Assume that k is the 
condition for a simulation run represented by a BDD, and the BDDs for signals d, e, and g are 
evaluated under our conditional symbolic simulation. In the simulation process, the BDD for 
signal / is evaluated by applying the And operations to the BDDs for signals d and e. Then, 
this BDD of signal / is simplified by the restrict operation with the condition Ä-. After that, the 
simplified BDD of signal / is used as one of the input to the Or gate. With proper conditions, 
this conditional symbolic simulation can reduce the BDDs of some internal signals to constant 
0 or 1. For example, when the condition k is Er = Ey - 10, signals e and g become 0 and 
1, respectively. On the other hand, conditional symbolic simulation sometimes cannot reduce 
the BDDs of some internal signals at all. For example, condition k can not take any effect to 
reduce the BDDs of signal d, because the function of d is independent of the condition k. 
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5.2.2   Short-Circuiting Technique 

Using conditional symbolic simulation, it is possible that the BDDs for some internal signals 
can be very large or cannot be build, but the BDDs for the final outputs are very small. For 
example, the BDDs of signal d in Figure 5.4 can be very difficult to build under the condition 
Ex — Ey- 10. If we try to build the BDDs for signal d and then signal e, then we cannot finish 
the job. However, if we build the BDD for signal e first, which will be 0, then we can directly 
return 0 for signal / without building the BDD for signal d. 

Based on this observation, we introduce a short-circuiting technique to eliminate unnecessary 
computations as early as possible. The word-level SMV and *PHDD packages are modified 
to incorporate this technique. In the *PHDD package, the BDD operators, such as And and 
Or, are modified to abort the operation and return a special token when the number of newly 
created BDD nodes within this BDD call is greater than a size threshold. In word-level SMV, 
for an And gate with two inputs, if the first input evaluates 0,0 will be returned without building 
the BDDs for the second input. Otherwise, the second input will be evaluated. If the second 
input evaluates to 0 and the first input evaluates to a special token, 0 is returned. Similar 
technique is applied to Or gates with two inputs. Nand(Nor) gates can be decomposed into 
Not and And (Or) gates and use the same technique to terminate earlier. For Xor and Xnor, 
the result is a special token, if any of the inputs evaluates to a special token. If the special 
token is propagated to the output of the circuit, then the size threshold is doubled and the output 
is recomputed. This process is repeated until the output BDD is built. For example, when 
the exponent difference is 30, the size threshold is 10000, the ordering is the best ordering of 
mantissa adder, and the evaluation sequence of the compare unit shown in Figure 5.4 is d, e, f, 
g and h, the values of signals d, e, f, g and h will be special token, 0, 0, 1, and 1, respectively, 
by conditional forward simulation. With these modification, the new system can verify all of 
the specifications for both types of FP adders by conditional forward simulation. We believe 
that this short-circuiting technique can be generalized and used in the verification which only 
exercises part of the circuits. 

5.3   Additional *PHDD algorithms 

5.3.1   Equalities and Inequalities with Conditions 

To verify arithmetic circuits, it is very useful to compute the set of assignments that satisfy F ~ 
G, where F and G are word level functions represented by HDDs or *PHDDs, and ~ can be any 
one of=,^, <,>,<,>. In general, the complexity of this problem is exponential. However, 
Clarke, et al. presented a branch-bound algorithm to efficiently solve this problem for a special 
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class of HDDs, called linear expression functions using the positive Davio decomposition [30]. 
The basic idea of their algorithm is first to compute H = F — G and then to compute the 
set of assignments satisfying H ~ 0 using a branch-and-bound approach. The complexity of 
subtracting two HDDs is 0( | F | x | G |). This algorithm can be shown to work well for the special 
class of HDDs (i.e., linear expression functions). However, the complexity of this algorithm 
for other classes of HDDs or *PHDDs can grow exponentially. In the verification of arithmetic 
circuits, HDDs and *PHDDs are not always in the class of linear expression functions. Thus, 
the H ~ 0 operations can not be computed for most cases. In fact, Bryant and Chen have 
shown that H = 0 is NP-Hard for BMDs. 

To solve this problem, we introduce relational operations with conditions to compute cond =4> 
{F ~ G), where F and G are word level functions and cond is a Boolean function. First, it 
computes H = F - G and then computes the set of assignments satisfying // ~ 0 under the 
condition cond. For example, the algorithm for H = 0 under the condition cond is given in 
Figure 5.5. This algorithm produces the BDDs satisfying H = 0 under the condition cond, and 
is similar to the algorithm in [30], except that it takes an extra BDD argument for the condition 
and uses the condition to stop the equality checking of the algorithm as soon as possible. As 
a convention, when the condition is false, the returned result is false. In line 1, the condition 
is used to stop this algorithm, when the condition is false. In line 16, the condition is also 
used to stop the addition of two *PHDDs and the further equality checking in lines 18 and 19, 
respectively. The efficiency of this algorithm will depend on the BDDs for the condition. If the 
condition is always true, then this algorithm has the same behavior as Clarke's algorithm. If the 
condition is always false, then this algorithm will immediately return false regardless of how 
complex the *PHDD is. We will demonstrate the usage of this algorithm to reduce computation 
time dramatically in Section 6.2.2. 

5.3.2   Equalities and Inequalities 

The efficiency of Clarke's algorithm for relational operations of two HDDs depends on the 
complexity of computing H = F-G. ThecomplexityofsubtractingtwoHDDsisO(|F| x |G'|) 
and similar algorithms can be used for these relational operators with *PHDDs. However, the 
complexity of subtracting two *PHDDs using disjunctive sets of supporting variables may grow 
exponentially. For example, the complexity of subtraction of two FP encodings represented 
by *PHDDs grows exponentially with the word size of exponent part [28]. Thus, Clarke's 
algorithm is not suitable for these operators with two *PHDDs having disjunctive sets of 
supporting variables. 

We have developed algorithms for these relational operators with two *PHDDs having disjunc- 
tive sets of supporting variables. Figure 5.6 shows the new algorithm for computing BDDs 
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bdd cond_equal_0(< Wh,h >, cond) 
1 if cond is FALSE, return FALSE; 
2 if < wh, h > is a terminal node, return (< wh, h >)= 0 ? TRUE : FALSE; 
3 if the operation (cond_equal_0,< Wh, h >,cond) is in computed cache, 

return result found in cache; 
4 r <— top variable of h and corad; 
5 < WhQ, ho>,< Whv hi ><- 0- and 1-branch of < Wh, h > with respect to variable r ; 
6 condo, cond\ «- 0- and 1-branch of con<f with respect to variable r ; 
7 bound_value(< w^, /i0 >, upperho, lowerho); bound_value(< whl,h>, upperhl, lowerhl); 
8 if (r uses the Shannon decomposition) { 
9 if (upperh0 < 0|| lower^ > 0) res0 «- FALSE; 
10 else res0 <- cond_equal_0(< tw^0, ho >,cond0); 
11 resi is computed similar to reso; 
12 } else if (r uses the positive Davio decomposition) { 
13 reso is computed the same as reso in Shannon decomposition; 
14 upperhl 4- upper^ + upperho; lower^ <- lower^ + lower^; 
15 if (upper hx < 0\\lowerhl > 0) re«i <- FALSE; 
16 else if (condx is FALSE) resi <- FALSE; 
17 else { 
18 < wÄI, /j0 > f- addition(< whl,hi>,< who, h0 >); 
19 resi <- cond-equal_0(< WhY,h\ >, cond\); 
20 } 
21 } else if (r uses the negative Davio decomposition) { 

reso and res\ computation are similar to them in positive Davio decomposition. 
22 } 
23 result <— find BDD node (r, reso, res{) in unique table, or create one if not exists; 
24 insert (cond_equal_0, < Wh,h >, cond, result) into the computed cache; 
25 return result; 

Figure 5.5: algorithm for H = 0 with conditions. H =< wh,h >. 
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bdd greater_than(< «7, / >, < irg.g >) 
1 if both < w/, f > and < wg. g > are terminal nodes, 

return ((< «7, />)>(< wg,g >)) ? TRUE : FALSE; 
2 min f- minimum(«7, w5); 
3 wj <— «7 — min; wg <— u'g— min; 
4 if the operation (greater.than, < «7, f >, < ?r5.5 >) is in computed cache, 

return result found in cache; 
5 r f- top variable of / and g 
6 < wj0, /o >, < «7,1/1 ><- 0- and 1-branch of < 1/7. / > with respect to variable r ; 
7 < wgo, go >, < M'31, </i >«— 0- and 1-branch of < irg.g > with respect to variable r ; 
8 bound_value(< wj0. /o >, upper j0. hirerj0); bound_value(< u'go.go >, vppcrgo. loweruo); 
9 bound_value(< 1*7,,/1 >, upperjr lowerj^; bound_value(< wgi,g\ >,upper gvhwergx); 
10 if (r uses the Shannon decomposition) { 
11 if (upperj0 < hirergo) rcso <— FALSE; 
12 else if (lower j0 > uppergo) re$o «— TRUE; 
13 else res0 <- greater_than(< «70. /o >,< wgo, g0 >); 
14 resi is computed similar to reso; 
15 } else if (r uses the positive Davio decomposition)! 
16 reso is computed the same as res0 in Shannon decomposition; 
17 upper/, «- upperfl + upperj0; uppergx f- vppergi + uppergo; 
18 lowerji <— lower jx + lowerf0; hwergi <— hwergi + lowergo\ 
19 if (upper/, < lowergi) res\ •*— FALSE; 
20 else if (lower jt > uppergx) rcs\ <—TRUE; 
21 else { 
22 < «7,, /1 > <- addition(< «7,, /1 >, < wh. fQ >); 

< wgi,9i > *- addition(< wgrgi >, < irgo.go >); 
23 res\ <- greater_than(< «7,,/i >,< «'Sl,5i >)'. 
24 } 
25 } else if (r uses the negative Davio decomposition) { 
26 reso and ?e.si are computed similar to positive Davio decomposition. 
27 } 
28 result f- find BDD node (r, reso, res\) in unique table, or create one if not exists. 
29 insert (greater_than, < w/,f>,< wg.g >,result) into the computed cache 
30 return result; 

Figure 5.6: Improved algorithm for F > G. F =< «7, / > and G =< wg<g >. 
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for the set of assignments that satisfy F > G. Similar algorithms are used for other relational 
operators. The main concept of this algorithm is to directly apply the branch-and-bound ap- 
proach without performing a subtraction, whose complexity could be exponential. First, if both 
arguments are constant, the algorithm returns the comparison result of the arguments. In line 
2 and 3, weights wj and wg are adjusted by the minimum of them to increase the sharing of 
the operations, since (2wf x /) > (2W<> x g) is the same as (2wf~min x /) > (2W<> ~min x g), 
where min is the minimum of wj and wg. Line 4 checks whether the comparison is in the 
computed cache and returns the result if it is found. In line 5 to 7, the top variable r is chosen 
and the 0- and 1-branches of / and g are computed. In lines 8 and 9, function bound„value 
is used to compute the upper and lower bounds of these four sub-functions, The algorithm of 
bound-value is similar to that described in [30], except edge weights are handled. The com- 
plexity of bound-value is linear in the graph size. When r uses the Shannon decomposition, 
lines 11 and 12 try to bound and finish the search for the 0-branch. If it is not successful, 
line 13 recursively calls this algorithm for 0-branch. The 1-branch is handled in a similar way. 
When r uses the positive Davio decomposition, the computation for 0-branch is the same as 
that in Shannon decomposition, since < wSl, /i > is the linear moment of < wj,f > and the 
1-cofactor of < wf, f > is equal to < wh, jx > + < wIo, f0 >, the lower(upper) bound of the 
1-cofactor of < wj, f > is bounded by the sum of lower (upper) bounds of < to/,, /i > and 
< wh) /o > • For the 1 -branch, new upper and lower bounds for the 1 -cofactors are recomputed 
in lines 17 and 18. In lines 19 and 20, new upper and lower bounds are used to bound and 
stop the further checking for 1-cof actor. If it is not successful, lines 21-24 add the constant 
and linear moments to get the 1-cof actors and recursively call this algorithm for the 1-cof actor 
case. For the negative Davio decomposition, the 0- and 1-branches are handled similar to the 
positive Davio decomposition. After generating res0 and resi for 0- and 1-cofactors, the result 
BDD is built and this computed operation is inserted to the computed cache for future lookups. 

This algorithm works very well for two *PHDDs with disjunctive set of supporting variables, 
while Clarke's algorithm has exponential complexity. For example, let F = Yl!=o 2Txx* and 
G = n"=o 22xy' • The variable ordering is xn,yn,..., x0, y0 and all variables use the Shannon 
decomposition. The *PHDDs for F and G have the structure shown in Figure 5.7. It can be 
proven that the complexity of this algorithm for this type of function is O^) if the computed 
cache is a complete cache. 
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Figure 5.7: *PHDDs for F and G. 



Chapter 6 

Verification of Floating-Point Adders 

In this chapter, we present the verification of a floating-point (FP) adder, obtained from the 
University of Michigan, as an example to validate our *PHDD representation and extended 
word-level SMV system. First, we briefly describe the floating-point adder design. Our 
methodology to verify floating-point adders is based on partitioning the input space to divide 
the specifications of floating-point adders into several hundred sub-specifications. Since we 
partition the input space, we introduce a BDD-based methodology to analyze the coverage of 
the input space by our specifications. Each sub-specifications can be verified within 5 minutes 
including counterexample generation if there is a design error in the input partition. Our 
system found five types of bugs in the design. For the corrected design, the verification of all 
specifications can be finished in 2 CPU hours on a Sun UltraSparc II machine. 

The remainder of this chapter is organized as follows. Section 6.1 illustrates the design of the 
floating-point adder. The specifications of FP adders is presented in Section 6.2. Section 6.3 
discusses the verification of the FP adder obtained from the University of Michigan including 
the design errors. Section 6.4 describes the verification of conversion circuits which convert 
the input from one format to another. 

6.1    Floating-Point Adders 

Let us consider the representation of FP numbers by IEEE standard 754. Double-precision FP 
numbers are stored in 64 bits: 1 bit for the sign (Sx), 11 bits for the exponent (Ex), and 52 bits 
for the mantissa (Nx). The exponent is a signed number represented with a bias (B) of 1023. 
The mantissa (Nx) represents a number less than 1. Based on the value of the exponent, the 
IEEE FP format can be divided into four cases: 

79 
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(-1)*' x l.Av x 2£j-B    // 0 < ET < All 1   {normal) 
(-l)Sj x O.Ar

r x 21-6      // £, = 0 {ck normal) 
NaN If Er = All 1 & Nx ^ 0 
(-l)Sj x oc // £, = All 1 & Ar

r = 0 
where NaN denotes Not-a-Number and oc represents infinity. Let M.r = LAV or 0.Nx. Let m 
be the number of mantissa bits including the bit on the left of the binary point and n be number 
of exponent bits. For IEEE double precision, ?7?=53 and ??=11. 

Due to this encoding, an operation on two FP numbers can not rewritten as an arithmetic 
function of two inputs. For example, the addition of two FP numbers A" (5r, Ex, Mr) and Y 
(Sy, Ey, My) can not be expressed as X + Y, because of special cases when one of them is 
NaN or ±oo. 

Y 
+ -■DC' F + OC NaN 

X 
—oo — OO —oc * NaN 
F — OC' Round (X + Y) + OC NaN 

+ OC * +oc + OC NaN 
NaN NaN NaN NaN NaN 

Table 6.1: Summary of the FP addition of two numbers of A' and Y 
normal and denormal numbers. * indicates FP invalid arithmetic operands. 

F represents the 

Table 6.1 summarizes the possible results of the FP addition of two numbers Ar and Y, where F 
represents a normalized or denormalized number. The result can be expressed as Bonn cl( X+Y) 
only when both operands have normal or denormal values. Otherwise, the result is determined 
by the case. When one operand is +oo and the other is -oc, the FP adder should raise the FP 
invalid arithmetic operand exception. 

Figure 6.1 shows the block diagram of the SNAP FP adder designed at Stanford University [83]. 
This adder was designed for fast operation based on the following facts. First, the alignment 
(right shift) and normalization (left shift) needed for addition are mutually exclusive. When a 
massive right shift is performed during alignment, the massive left shift is not needed. On the 
other hand, the massive left shift is required only when the mantissa adder performs subtraction 
and the absolute value of exponent difference is less than 2 (i.e. no massive right shift). Second, 
the rounding can be performed by having the mantissa adder generate A + C, A + C + 1 and 
A + C + 2, where A and C are the inputs of the mantissa adder shown in Figure 6.1, and using 
the final multiplexor to chose the correct output. 

In the exponent path, the exponent subtracter computes the difference of the exponents. The 
MuxAbs unit computes the absolute value of the difference for alignment. The larger exponent 
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Figure 6.1: The Stanford FP adder. 
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is selected as the input to the exponent adjust adder. During normalization, the mantissa may 
need a right shift, no shift or a massive left shift. The exponent adjust adder is prepared to 
handle all of these cases. 

In the mantissa path, the operands are swapped as needed depending on the result of the 
exponent subtracter. The inputs to the mantissa adder are: the mantissa with larger exponent 
(A) and one of the three versions of the mantissa with small exponent (C): unshifted, right 
shifted by 1, and right shifted by many bits. The path select unit chooses the correct version 
of C based on the value of exponent difference. The version right shifted by many bits is 
provided by the right shifter, which also computes the information needed for the sticky bit. 
The mantissa adder performs the addition or subtraction of its two inputs depending on the signs 
of both operands and the operation (add or subtract). If the adder performs subtraction, the 
mantissa with smaller exponent will first be complemented. The adder generates all possible 
outcomes (A + C,A + C+1, and A + C + 2) needed to obtain the final, normalized and rounded 
result. The A + C + 2 is required, because of the possible right shift during normalization. 
For example, when the most significant bits of A and C are 1, A + C will have m + 1 bits 
and must be right shifted by 1 bit. If the rounding logic decides to increase 1 in the least 
significant bit of the right shifted result, it means add 2 into A + C. When the operands have 
the same exponent and the operation of the mantissa adder is subtraction, the outputs of the 
adder could be negative. The ones complementer is used to adjust them to be positive. Then, 
one of these outputs is selected by the GRS unit to account for rounding. The GRS unit also 
computes the true guard (G), round(/?), sticky (5) bits and the bit to be left shifted into the 
result during normalization. When the operands are close (the exponent difference is 0, 1, or 
-1) and the operation of the mantissa adder is subtraction, the result may need a massive left 
shift for normalization. The amount of left shift is predicted by the leading zero anticipator 
(LZ4) unit in parallel with the mantissa adder. The predicted amount may differ by one from 
the correct amount, but this 1 bit shift is made up by a l-bit fine adjust unit. Finally, one of the 
four possible results is selected to yield the final, rounded, and normalized result based on the 
outputs of the path select and GRS units. 

As an alternative to the SNAP design, the ones complementer after the mantissa adder can be 
avoided, if we ensure that input C of the mantissa adder is smaller than or equal to input A, 
when the exponent difference is 0 and the operation of mantissa adder is subtraction. To ensure 
this property, a mantissa comparator and extra circuits, as shown in [95], are needed to swap 
the mantissas correctly. Figure 6.2 shows a variant of the SNAP FP adder with this modification 
(the compare unit is added and the ones complementer is deleted). This compare unit exists 
in many modern high-speed FP adder designs [95] and makes the verification harder described 
in Section 5.2.2. Figure 6.3 shows the detailed circuit of the compare unit which generates the 
signal to swap the mantissas. The signal ET < Ey comes from the exponent subtracter. When 
Ex < Ey or Ex = Ey and Mx < My (i.e., h =1), A is My (i.e. the mantissas are swapped). 
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Otherwise, A is Mr. 

Mx<My 
d 

Ex=Ey 
e 

E  < E - x ^     y 

Figure 6.3: Detailed circuit of the compare unit. 

To verify this type of floating-point adders, the BDDs for the output bits cannot be built using 
conditional symbolic simulation, when the exponent difference is large. This is caused by 
a conflict of variable orderings for the mantissa adder and the mantissa comparator, which 
generates the signal MT < My (i.e. signal d in Figure 6.3). The best variable ordering for the 
comparator is to interleave the two vectors from the most significant bit to the least significant 
bit (i.e., xm-\, ym-\, ..., XQ, yd). Table 6.2 shows the CPU time in seconds and the BDD size 
of the signal d under different variable orderings, where ordering offset represents the number 
of bit offset from the best ordering. For example, the ordering is xm_u ..., .r„,_6, ,y„,_i, .T„,_7, 

ym-2, -, z'o, 2/5. •••> 2/0, when the ordering offset is 5. Clearly, the BDD size grows exponentially 
with the offset. In contrast to the comparator, the best ordering for the mantissa adder is .r„,_i, 
..., rcm_jfc_i, ym-\, a-m_A_2, ym-2, -. ^"o, IJk, •••, 2/o, when the exponent difference is k. Thus, 
the BBDs for the outputs of floating-point adders cannot be built using conditional symbolic 
simulation. 

Observe that signals e and g cannot be 1 simultaneously and signal d is only useful when e 
is 1. Thus, the BDDs of signal d must be built only when Er = Ey. In this case, it has no 
problem building signal d, because the best ordering for both mantissa adder and compare unit 
are the same. The short-circuiting technique described in Section 5.2.2 is used to overcome 
this ordering conflict problem, when Er ^ Ey. 

6.2   Specifications of FP Adders 

In this section, we focus on the general specifications of the FP adder, especially when both 
operands have denormal or normal values. For the cases in which at least one of operands is a 
NaN or oo, the specifications can be easily written at the bit level. For example, when both 
operands are NaN, the expected output is A« AT (i.e. the exponent is all Is and the mantissa 
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Ordering Offset BDD Size CPU Time (Sec.) 
0 157 0.68 
1 309 0.88 
2 608 1.35 
3 1195 2.11 
4 2346 3.79 
5 4601 7.16 
6 9016 13.05 
7 17655 26.69 
8 34550 61.61 
9 67573 135.22 
10 132084 276.23 

Table 6.2: Performance measurements of a 52-bit comparator with different orderings. 

is not equal to zero). The specification can be expressed as the "AND" of the exponent output 
bits is 1 and the "OR" of the mantissa output bits is 1. 

When both operands have normal or denormal values, the ideal specification is OUT = 
Round{X + Y). However, FP addition has exponential complexity with the word size of the 
exponent part for *PHDD. Thus, the specification must be divided into several sub-specifications 
for verification. According to the signs of both operands, the function X + Y can be rewritten 
as Equation 6.1. 

X + Y (-1) 
s■      / {2Ex~B x Mx + Myx 2Ev-B)   Sx = Sy (true addition) x 

(2E*~B xMx-Myx 2Ey~B)   Sx ^ Sy (true subtraction^ 

Similarly, for FP subtraction, the function X - Y can be also rewritten as true addition when 
both operands have different signs and true subtraction when both operands have the same sign. 

6.2.1   True Addition 

The *PHDDs for the true addition and subtraction still grow exponentially. Based on the sizes 
of the two exponents, the function X + Y for true addition can be rewritten as Equation 6.2. 

X + Y ;-iy 
2EX-B x ^Mx + ^My y>   -^     Ey < Ex 

2Ey-B x (Mv + ^Mx >>  -jj     Ey > Ex (6.2) 
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Figure 6.4: Cases of true addition for the mantissa part. 

where i = \ET — Ey\. When Ey < ET, the exponent is ET and the mantissa is the sum of M7. 
and My right shifted by (ET — Ey) bits (i.e. My » (ET — Ey) in the equation). Er — Ey can 
range from 0 to 2" — 2, but the number of mantissa bits in FP format is only m bits. Figure 6.4 
illustrates the possible cases of true addition for Ey < Er based on the values of Er — Ey. In 
Figure 6.4.a, for 0 < Ex — Ey < m, the intermediate (precise) result contains more than m bits. 
The right portion of the result contains L, G, R and S bits, where L is the least signification bit 
of the mantissa. The rounding mode will use these bits to perform the rounding and generate 
the final result(Mour) in m-bit format. When ET — Ey> m as shown in Figure 6.4.b, the right 
shifted My only contributes to the intermediate result in the G, R and S bits. Depending the 
rounding mode, the output mantissa will be Mr or MT + 1 * 2~m+1. Therefore, we only need 
one specification in each rounding mode for the cases Er — Ey > m. A similar analysis can be 
applied to the case Ey > Ex. Thus, the specifications for true addition with rounding can be 
written as: 

Ca\[i\ =» OUT = Round{{-\)s* x 2E'~B x (Mr + (My » ?)))   0 < i < m 
OUT = Round((-l)s* x 2E*~B x (Mr + {My » m)))     i > m 
j.  riTTT — D ,,;//    i\S.r  .., iE,,-B w /" »f    i   tur   ^^   -\\\    r\ ^ ■  . 

all*] 

Cal 

Ca3[i] => OUT = Round{(-l)s* x 2Ey~B x (My + (MT » »')))   0 < i < m 
Ca4 => OUT = Rou.nd{(-l)s* x 2F 

(6.3) 

tEy-B (My + (Mr»m)))     i> m 

where Ca\[i], Cai, Caj[i] and Ca4 are Cond.add&.Er = Ey + /, OoiuLadd& Er > Ey + m, 
Cond-addScEy = Ex + i, and Cond^add&Ey > ET -f rn, respectively. Cond.add represents 
the condition for true addition and exponent range (i.e. normal and denormal numbers only). 
OUT is composed from the outputs Sout, Eoui and Mout- Conditions Er — Ey = i and 
Ex - Ey > m are represented by 2El - 2E»+l and 2El > 2E,J+m. Both sets of variables 
must use Shannon decomposition to represent the FP function efficiently in [28]. With this 
decomposition, the graph sizes of ET and Ey are exponential in *PHDDs, but 2Er and 2Ey will 
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have linear size. While building BDDs and *PHDDs for OUT from the circuit, the function 
on left side of =4> will be used to simplify the BDDs automatically by conditional forward 
simulation. We observed that the best ordering for the specification represented by *PHDDs is 
the same ordering as the best ordering for the mantissa adder. 

The number of specifications for true addition is 2m + 1. For instance, the value of m for IEEE 
double precision is 53, thus the number of specifications for true addition is 107. Since the 
specifications are very similar to one another, they can be generated by a looping construct in 
word-level SMV. 

6.2.2   True Subtraction 

The specification for true subtraction can be divided into two cases: far (]EX — Ey\ > 1) and 
close (Ex — Ey=0,l or -1). For the far case, the result of mantissa subtraction does not require 
a massive left shift (i.e., LZA is not active). Similar to true addition, the specifications for true 
subtraction can be written as Equation 6.4. 

Csi\i] =» OUT = Round{{-\)s* x 2E*~B x (Mx - (M„ » i))) 2<i<m 
Cs2 =* OUT = Round{{-\)s* x 2E*-B x (Mx - (M„ » m))) i > m 
Cs3[i]^OUT = Round{(-l)sy x 2E«~B x (My - (Mx » i))) 2<i<m     (6'4) 

Cs4 => OUT = Round((-l)sy x 2Ey~B x (M„ - (Mx » m))) i > m 

where Csl\i], Cs2, Cs3[i] and Cs4 are Cond.subScEx = Ey + i, Cond.sub &EX > Ey + m, 
Cond-.sub&Ey = Ex + i, and Condsub&Ey > Ex + m, respectively. Condsub represents 
the condition for true subtraction. 

For the close case, the difference of the two mantissas may generate some leading zeroes such 
that normalization is required to product a result in IEEE format. For example, when Ex - Ey 

= 0,MX- My=0.0...01 must be left shifted by m - 1 bits to 1.0...00. The number of bits to left 
shift is computed in the LZA circuit and fed into the left shifter to perform normalization and 
into the subtracter to adjust the exponent. The number of bits to be left shifted ranges from 0 to 
m and is a function of Mx and My. The combination of left shifting and mantissa subtraction 
make the *PHDDs become irregular and grow exponentially. Therefore, the specifications for 
these cases must be divided further to take care of the exponential growth of *PHDD sizes. 

Based on the number of leading zeroes in the intermediate result of mantissa subtraction, we 
divide the specifications for the true subtraction close case as shown in Equation 6.5. 

Ccl\i] =* OUT = Round((-l)s° x 2E*~B x (Mx - (My » 1))) 0 < i < m 
Cc2\i] =}► OUT = Round((-l)sy x 2^~B x (My - (Mx » 1))) 0 < i < m 
Cc3\i]) => OUT = Round((-l)s* x2E°~B x {Mx - My)) \<i<m     (6-5) 

CJS\) => OUT = Round((-l)sy x 2Ey~B x (M„ - Mx)) l<i<m 
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where where Cci[i], CC2[?],Cf3[>], and Cc4[/] are Cond sub & Ex = £v + 1 & ££[■/], CoiuLsvb 
&Ey = Ex + 1 & L,S'[?], Condsub&Er = Ey&Mx > My &' LS\i], and CoiuLsnb& 
Ey = Er + l&Mr < il/j, & I.S'[?], respectively. I5'l[/], Z^/j, LS3[i] and Z,5'4[/'] represent 
the conditions that the intermediate result has i leading zeroes to be left shifted. LS\[i], 
LS2[i], LS3[i] and LS4[i] are computed by 2"'-*'-1 < Mx - {My » 1) < 253~\ 2"-''-1 < 
My - {Mx » 1) < 2"!-\ 2'"-'-1 < A/, - My < 2"'-', and 2m — 1 < My - Mx < 2m-'), 
respectively. A special case is that the output is zero when Ex is equal to Ey and Mx is equal 
to My. The specification is as follows: (Condsub &EX = Ey &MX = My) =» Of/"T = 0. 

6.2.3   Specification Coverage 

Since the specifications of floating-point adders are split into several hundred sub-specifications, 
do these sub-specifications cover the entire input space? To answer this question, one might 
use a theorem prover to check the case splitting. In contrast, we propose a BDD approach to 
compute the coverage of our specifications. 

Our approach is based on the observation that our specifications are in the form "cond =$■ out — 
expected .result" and cond is only dependent on the inputs of the circuits. Thus, the union of 
the conds of our specifications, which can be computed by BDD operations, must be TRUE 
when our specifications cover the entire input space. In other words, the union of the conds can 
be used to compute the percentage of input space covered by our specifications and to generate 
the cases which are not covered by our specifications. 

6.3   Verification of FP Adders 

In this section, we used the FP adder in the Aurora III Chip [56], designed by Dr. Huff as part 
of his PhD dissertation at the University of Michigan, as an example to illustrate the verification 
of FP adders. This adder is based on the same approach as the SNAP FP adder [83] at Stanford 
University. Dr. Huff found several errors with the approach described in [83]. This FP adder 
only handles operands with normal values. When the result is a denormal value, it is truncated 
to 0. This adder supports IEEE double precision format and the 4 IEEE rounding modes. In 
this verification work, we verify the adder only in round to nearest mode, because we believe 
that the round to nearest mode is the hardest one to verify. All experiments were carried out on 
a Sun 248 MHz UltraSPARC-II server with 1.5 GB memory. 

The FP adder is described in the Verflog language in a hierarchical manner. The circuit was 
synthesized into flattened, gate-level Verflog, which contains latches, multiplexors, and logic 



6.3.   VERIFICATION OF FP ADDERS 89 

gates, by Dr. John Zhong at SGI. Then, a simple Perl script was used to translate the circuit 
from gate-level Verilog to SMV format. 

6.3.1 Latch Removal 

Huff's FP adder is a pipelined, two phase design with a latency of three clock cycles. We 
handled the latches during the translation from gate-level Verilog to SMV format. Figure 6.5.a 
shows the latches in the pipelined, two phase design. In the design, phase 2 clock is the 
complement of the phase 1 clock. Since we only verify the functional correctness of the design 
and the FP adder does not have any feedback loops, the latches can be removed. One approach 
is to directly connect the input of the latch to the output of the latch. This approach will 
ehrninate some logic circuits related to the latch enable signals as shown on the right side of the 
latches in Figure 6.5.a. With this approach, the correctness of these circuits can not be checked. 
For example, an design error in the circuit, that always generated Os for the enable signals of 
latches, can not be found, if we use this approach to remove the latches. 

Our approach for latch removal is based on this observation: the data are written into the 
latches when the enable signals are 1. To ensure the correctness of the circuits for the enable 
signals, the latches can be replaced by And gates, as shown in Figure 6.5.b, without losing the 
functional behavior of the circuit. Since phase 2 clock is the complement of the phase 1 clock, 
we must replace the phase 2 clock by the phase 1 clock. Otherwise the circuit behavior will 
be incorrect. With this approach, we can also check the correctness of circuits for the enable 
signals of the latches. 

6.3.2 Design with Bugs 

In this section, we describe our experience with the verification of a FP adder with design 
errors. During the verification process, our system found several design errors in Huff's FP 
adder. These errors were not caught by more than 10 million simulation runs performed by 
Dr. Huff in 4 days. Huff partitioned the simulation runs into three main operating regimes: 
alignment equal to 0, equal to 1, and greater than 1. For each regime, random floating-point 
numbers were fed to the design for simulation. 

The first error we found is the case when A + C = 01.111...11, A + C + 1=10.000...00, and the 
rounding logic decides to add 1 to the least significant bit (i.e., the result should be A + C + 1), 
but the circuit design outputs A+C as the result. This error is caused by the incorrect logic in the 
path select unit, which categorized this case as a no shift case instead of a right shift by 1. While 
we were verifying the specification of true addition, our system generated a counterexample for 
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Figure 6.5: Latch Removal, (a) The pipelined, two phase design, (b) The design after latch 
removal. 

this case in around 50 seconds. To ensure that this bug is not introduced by the translation, we 
have used Cadence's Verilog simulation to verify this bug in the original design by simulating 
the input pattern generated from our system. 

The second design error we found is in the sticky bit generation. The sticky bit generation is 
based on the table given in page 10 of Quach's paper describing the SNAP FP adder [83]. The 
table only handles cases when the absolute value of the exponent difference is less than 54. 
The sticky bit is set 1 when the absolute value of the exponent difference is greater than 53 (for 
normal numbers only). The bug is that the sticky bit is not always 1 when the absolute value of 
the exponent difference is equal to 54. Figure 6.6 shows the sticky bit generation when Er — Ey 

= 54. Since A^ has 52 bits, the leading 1 will be the Round (7?) bit and the sticky (5) bit is 
the OR of all of Ny bits, which may be 0. Therefore an entry for the case \Er — Ey\ = 54 is 
needed in the table of Quach's paper [83]. 

The third design error occurs in the exponent path. The number of bits (6 bits) generated by 
the Encode unit, shown in Figure 6.1, is insufficient for the exponent offset unit, which may 
complement the vector and performs sign extension to 11 bits. 6 bits can represent values 
from 0 to 63. However, when the value is greater than 31 (i.e. lxxxxx), the vector generated 
from the exponent offset unit looks like (11111 lxxxxx) after sign extension. This 11-bit vector 
is incorrect and the correct vector should be (00000lxxxxx). Thus, a 7-bit vector must be 
generated by the Encode unit to achieve correct sign extension. 

The fourth error is that Dr Huff missed one signal (denoted SHrev52 which indicates the 
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Figure 6.6: Sticky bit generation, when Ex - Ey= 54. 

intermediate result must be left shifted by 52 bits) in the OR gates to generate the 3rd least 
significant bit of the exponent offset in the Encode unit. 

The fifth error occurs in the LZA unit which predicts the number of leading zeroes to be left 
shifted for normalization. When the exponent difference is 1 and A = 1.00...000 and C = 
0.11...1111 (right shifted by 1 bit), the intermediate result is 0.00...0001, which must be left 
shifted by 53 bits. However, the LZA unit generated the incorrect value: 0 bits. I believe that 
this error is the most difficult one to be detected by simulation, since this is the only case in 
which intermediate result needs to be left shifted by 53 bits. 

In summary, our system found bugs in the mantissa and exponent paths within several minutes. 
From our experience, the design errors in the mantissa path do not cause the *PHDD explosion 
problem. However, when the error is in the exponent path, the *PHDD may grow exponentially 
while building the output. A useful tip to overcome the *PHDD explosion problem is to reduce 
the exponent value to a smaller range by changing the exponent range condition in Cond.add 
or Condsub in Equation 6.3, 6.4 or 6.5. 

6.3.3   Corrected Designs 

After identifying the bugs, we fixed the circuit in the SMV format. In addition, we created 
another FP adder by adding the compare unit in Figure 6.Lb into Huff's FP adder. This new 
adder is equivalent to the FP adder in Figure 6. Lb, since the ones complement unit will not be 
active at any time. 

To verify the FP adders, we combined the specifications for both addition and subtraction in- 
structions into the specification of true addition and subtraction. We use the same specifications 
to verify both FP adders. Table 6.3 shows the CPU time in seconds and the maximum memory 
required for the verification of both FP adders. The CPU time is the total time for verifying all 
specifications. For example, the specifications of true addition are partitioned into 18 groups 
and the specifications in the same group use the same variable ordering. The CPU time is the 
sum of these 18 verification runs. The FP adder II can not be verified by conditional forward 
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Case 
CPU Time (seconds) Max. Memory (MB) 

FP adder I FP adder II FP adder I FP adder II 
True addition 3283 3329 49.07 54.91 

True subtraction(/ar) 2654 2668 35.20 35.33 
True subtraction (close) 994 1002 53.07 47.78 

Table 6.3: Performance measurements of verification of FP adders. FP adder I is Huff's FP 
adder with bugs fixed. FP adder II is FP adder I with the compare unit in Figure 6.1.b. For true 
subtraction,/ar represent cases \EX - Ey\ > 1, and close represent cases \Er - Ey\ < 1. 

simulation without the short-circuiting technique described in Section 5.2.2. The maximum 
memory is the maximum memory requirement of these 18 runs. For both FP adders, the verifi- 
cation can be done within two hours and requires less than 55 MB. Each individual specification 
can be verified in less than 200 seconds. 

In our experience, the decomposition type of the subtrahend's variables for the true subtraction 
cases is very important to the verification time. For the true subtraction cases, the best 
decomposition type of the subtrahend's variables is negative Davio decomposition. If the 
subtrahend's variables use the positive Davio decomposition, the *PHDDs of OUT for each 
specification can not be built after a long CPU time (> 4 hours). 

As for the coverage, the verified specifications cover 99.78% of the input space for the floating- 
point adders in IEEE round-to-nearest mode. The uncovered input space (0.22%) is caused by 
the unimplemented circuits for handling the cases of any operands with denormal, NaN or oo 
values, and the cases where the result of the true subtraction is denormal value. 

Our results should not be compared with the results in [29], since the FP adders handle 
difference precision (i.e., their adder handles IEEE extended double precision) and the CPU 
performance ratio of two different machines is unknown (they used a HP 9000 workstation 
with 256MB memory). Moreover, their approach partitioned the circuit into sub-circuits which 
are verified individually based on the assumptions about their inputs, while our approach is 
implementation-independent. 

6.4    Conversion Circuits 

The overflow flag erratum of the FIST instruction (FP to integer conversion) [44] in Intel's 
Pentium Pro and Pentium II processors has illustrated the importance of verification of conver- 
sion circuits [56] which convert the data from one format to another. For example, the MIPS 



6.4.  CONVERSION CIRCUITS 93 

processor supports conversions between any of the three number formats: integer, IEEE single 
precision, and IEEE double precision. 

We believe that the verification of the conversion circuits is much easier than the verification of 
FP adders, since these circuits are much simple than FP adders and only have one operand(i.e. 
less variables than FP adders). For example, the specification of the double-to-single oper- 
ation, which converts the data from double precision to single precision, can be written as 
"(overflow .flag = expected-overflow) A (not overflow .flag =4> (output = expected.output))", 
where overflow.flag and output are directly from the circuit, and expected.overflow and ex- 
pectedjoutput are computed in terms of the inputs. This specification covers double precision 
which cannot be represented in single precision. For example, expectedjoutput is computed by 
Round((-l)s x M x 2E~B). Similarly, expected-overflow can be computed from the inputs. 

For another example, the specification of the single-to-double operation can be written as 
"output = input", since every number represented in single precision can be represented in 
double precision without rounding(i.e. the output represents the exact value of input). 
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Chapter 7 

Conclusion 

7.1    Summary 

This thesis set out to provide techniques for verifying arithmetic circuits. In the previous 
chapters, we have described word-level decision diagrams and methodologies for the formal 
verification of these circuits. First, we introduced Multiplicative Binary Moment Diagrams 
(*BMDs) which provide a compact representation for integers functions. *BMD can serve as 
the basis for a hierarchical methodology for verifying integer circuits such as multipliers and 
dividers. Based on *BMDs and the hierarchical verification methodology, we have verified 
several integer circuits such as multipliers, dividers, and square roots. 

Our *BMD-based approach cannot be directly applied to verify floating-point circuits. Two 
major challenges were that no existing word-level diagrams provide compact representations 
for floating-point functions and the decision diagrams explode during the composition of spec- 
ifications in the rounding module. To overcome the first problem, we introduced Multiplicative 
Power Hybrid Decision Diagrams (*PHDDs) to represent integer and floating-point functions 
efficiently The performance comparison between *BMDs and *PHDDs for verification of in- 
teger circuits was discussed. To overcome the second problem, we changed our methodology 
to verify flattened design of floating-point circuits and described several improvements to 
word-level SMV to enable the verification of floating-point circuits such as adders. 

We have illustrated the power of these techniques by verifying integer multipliers, dividers 
and square roots as well as floating-point adders. Our system found several design errors 
while verifying a floating-point adder obtained from the University of Michigan. We also 
demonstrated that our specifications are reusable for different implementations of floating- 
point adders. The important advantage of our system is that the verification process is fully 
automatic. 

95 
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7.2   Future Work 

7.2.1 Floating-Point Multipliers & Dividers 

Floating-point adders, multipliers and dividers are the most common components of floating- 
point units. We have fully automated the verification of floating-point adders. However, we 
still have problems to automate the verification of floating-point multipliers and dividers. The 
main obstacle, which prevents us from verifying floating-point multipliers automatically, is that 
*PHDDs explode in size for the rounded result of floating-point multiplication and no good 
partitioning scheme of the input space was found to resolve this problem. Currently, floating- 
point multipliers must be divided into two sub-circuits: rounding module and the circuits before 
rounding. Each sub-circuit can be verified individually using word-level SMV with *PHDDs. 
However, the composition of the specifications of these sub-circuits can not be done using 
*PHDDs. Theorem provers are good candidate to handle this task. 

Verification of floating-point dividers is even more challenging than verification of floating- 
point multipliers. Most of the circuit designs for floating-point dividers are iterative. The 
iterative design must be unrolled to verify the overall correctness of the result before rounding. 
Without unrolling, only the correctness of each iteration can be verified separately. Similar to 
floating-point multipliers, the rounding module must be verified separately. 

It would be interesting to further investigate verification of these two types of floating-point 
circuits. One possible direction is to find a good partitioning scheme to partition the input space 
into several hundred or thousand partitions such that the verification task for each partition can 
be finished in a short time. Another possible direction is to develop another word-level diagram 
to provide a compact representation for the rounded result. 

7.2.2 Arithmetic Circuits for MMX and DSP 

In recent years, many processors have added MMX instructions to speed up the performance of 
the multimedia applications. For example, Intel introduced Pentium processors with MMX [50] 
in January, 1996 and Pentium II processors (i.e. Pentium Pro with MMX) in May, 1997 [51]. 
Other vendors such as Digital, HP, Sun and SGI added similar instructions into their proces- 
sors [49]. Many of these MMX instructions perform arithmetic operations. Thus, the circuits 
for them are arithmetic circuits. Digital Signal Processors (DSP) also contain a lot of arithmetic 
circuits. 

Most of arithmetic circuits for MMX or DSP are based on integer adders, multipliers and 
multiply-accumulate units. Recently, floating-point circuits are being used in MMX and DSP. 
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For example, Mpact2 introduced by Chromatic at the end of 1996 [98] contains floating-point 
adders and multipliers. 

In addition to regular arithmetic, circuits for saturated operations are common in both MMX 
and DSP. A saturated addition operation on two 32-bit operands will yield the maximum value 
representable by 32 bits as the final result when the sum of two operands is greater the maximum 
value. We believe that our techniques can be directly applied to verify the circuits for saturated 
adders (both integer and floating-point). The verification of circuits for saturated floating-point 
multiplication has the same difficulty as normal floating-point multiplication. In addition, our 
techniques cannot successfully verify the saturated integer multiplication circuits, because the 
*PHDD (*BMD) explodes in size. To be specific, for two 32-bit inputs X and Y, the expected 
result will be (X * Y > 232)?232 - 1 : X * Y. We could not compute the BDD for X*Y> 232 

and we believe that the *PHDDs for the expected result will grow exponentially with the word 
size. Further investigation of this problem is needed to verify this type of integer multiplier. 
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Chapter 8 

*PHDD Complexity of Floating-Point 
Operations 

In this Chapter, we prove the *PHDD complexity of floating-point multiplication and addition. 
The complexity of floating-point multiplication is shown to be linear in Section A. Section B 
shows that the complexity of floating-point addition grows linearly with the mantissa size, but 
grows exponentially with the exponent size. 

A    Floating-Point Multiplication 

Let Fx = (-l)
s* x vx.X x 2EX~B and FY = (-if* x vy.X x 2EY~B, where vx (vy) is 0 

if EX (EY) = 0, otherwise, vx (vy) is 1. EX and EY are n bits, and X and Y are m bits. 
Let the variable ordering be the sign variables, followed by the exponent variables and then the 
mantissa variables. Based on the value of EX, Expanding and rearranging the terms of the 
multiplication Fx x Fy yields: 

FxxFy   =   (-I)5*©5*/ x {vx.X x 2EX~B) x (vy.Y x 2EY~B 

21 x (0.X x vy.Y) x 2m 

2EX x (1.X x (vv.Y) x 2EY   Case 1:EX^0 
-    (   ^sx®sy y2-2Byi 2lx (OX x vy.Y) x2EY        CaseO:EX = 0 

The following theorem shows that the size of the resulting graph grows linearly with the word 
size for the floating-point multiplication. 

Theorem 1 The size of the resulting graph of floating-point multiplication is 6(n + m) + 3, 
where n and m are the number of bits in the exponent and mantissa parts. 
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Proof: From Equation 8.1 and Figure 4.7, we know that there are no sharing in the sub-graphs 
for EX = 0 and EX ^ 0. For EX = 0, the size of the sub-graph except leaf nodes is the 
sum of the nodes for the exponent of Fy (2» — 1 nodes), the nodes for the mantissa of F\ (2/n 
nodes), and the nodes for the mantissa of Fy (??? nodes). Similarly, for EX ^ 0, the size of 
the sub-graph except leaf nodes is also 2?? + 3??? — 1. The size for the exponent part of F\ is 
2?? - 1. The number of nodes for the sign bits and top level edge weight is 3, and the number 
of leaf nodes is 2. Therefore, the size of the resulting graph for floating-point multiplication is 
6{n + m) + 3. □ 

B   Floating-Point Addition 

In this section, we prove that the exact graph size of floating-point addition under a fixed 
variable ordering grows exponentially with the size of the exponent and linearly with the size 
of the mantissa. Assume that the sizes of the exponent and the mantissa are ?? and ??? bits, 
respectively. We assume that the variable ordering is Sr, Sy, ex0, ey0, ..., e.r„_i, ey„-i, .r„,_i, 
..., .T0, ym-\,..., j/o- 

For floating-point addition, the size of the resulting graph grows exponentially with the size of 
the exponent part. The following theorem proves that the number of distinct mantissa sums in 
*PHDD representation grows exponentially with the size of the exponent part. 

Theorem 2 For floating-point addition F\- + Fy, the number of distinct mantissa sums is 
2"+3 _ 10, where n is the number of bits in the exponent part. 

Proof: We first show that the floating-point addition can be divided into two cases according 
to their sign bits. When ST © Sy is equal to 0, the floating-point addition must be performed as 
"true addition" shown as Equation 6.1. 

FA- + Fy-   =   (-l)s* x (2EX-B x vr.X + vy.Y x 2EY~B) (8.2) 

When Sx © Sy is equal to l(i.e., they have different sign), the floating-point addition must be 
performed as "true subtraction" shown as the following equation. 

Fx + Fy   =   (-l)s*x(2EX-BxvT.X-vy.Yx2EY-B) (8.3) 

There is common distinct mantissa sum among true addition and true subtraction, since one 
performs addition and another performs subtraction. 
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Let us consider the true addition operation first.   Based on the relation of EX and EY, 
Equation 8.2 can be rewritten as the following equation: 

Fx + FY = (- 

_1)S* 

l)s* 

_1)5. 

x2EY- B X{2EX-EY x l.X + l.y} 
B x{l.X + l.Y x2EY~EX} 
B 

(8.4) 

x2EA" 
x2EX~B x{l.X + l.y} 
x2'-s x{2ßX-1 x 1.X + 0.Y} 
x2l~B x{0.X + l.Yx2EY~1} 
x2'"B x {0.X + 0.Y} 

Case 0:EX >0 &EY > 0 &EX > EY 
Case l:EX>0 &EY > 0 &EX < EY 
Case 2 : EX > 0 &EY > 0 &.EX = £Y 
Case 3 : £X > 0 &EY = 0 
Case 4 : EX = 0 &£Y > 0 
Case 5 : EX = EY = 0 

(8.5) 

For Case 5, the number of distinct mantissa sums is only 1. For Case 4, the number of distinct 
mantissa sums is the same as the number of possible values of EY except 0, which is 2n - 1. 
Similarly, for Case 3, the number of distinct mantissa sums is also 2n ~ 2, but O.X+l.Y has the 
same representation as 1 .X+O.Y in case 1. For Case 2, the number of distinct mantissa sums is 
only 1. For Case 1, the number of distinct mantissa sums is the same as the number of possible 
values of EY - EX. Since both EX and EY can not be 0, the number of possible values of 
EY - EX is 2n - 2. Therefore, the number of distinct mantissa sums is 2™ - 2. Similarly, 
for Case 0, the number of distinct mantissa sums is also 2" - 2. Therefore the total number of 
distinct mantissa sums for the true addition is 2n+2 - 5. 

Similarly, Equation 8.3 can be rewritten as the following equation: 

Fx + FY 

-l)s> 
.1)5, 
.1)5. 
.1)5. 
.1)5. 

,EX-E} 
-iy*x 

,  x 2EX~B  x {1X 

x 2EX~B x {1.X 
x 2l~B x {2EX~1 x IX - 0.Y} 

x l.X-l.Y} 
l.y x 2EY~EX} 
l.Y} 

X21" 
X21" 

B x {OX 
B x {0.X 

l.Y x 2BY-1} 
0.Y} 

Case 0 : EX > 0 &.EY > 0 &EX > EY 
Case 1:EX>0 &EY > 0 &EX < EY 
Case 2:EX>0 &EY > 0 &EX = EY 
Case 3:EX>0 &EY = 0 
Case 4:EX = 0 &EY > 0 
Case 5:EX = EY = 0 

(8.6) 

For Case 0 and 1, the numbers of distinct mantissa sums are the same as that in the corresponding 
cases of true addition. For Case 2, the mantissa sum l.X - l.Y is the same as 0.X - 0.Y in 
Case 5. For both Case 3 and 4, the number of distinct mantissa sum is 2n - 1. Therefore, the 
number of of distinct mantissa sums for the true subtraction is also 2n+2 - 5. Thus, the total 
number of distinct mantissa sums is 2n+3 — 10. Q 

Lemma 1 The size of the mantissa part of the resulting graph is 2n+1(7m - 1) - 20m 
where n and m are the numbers of bits of the exponent and mantissa parts respectively. 

4, 

Proof: Theorem 2 showed that the number of distinct mantissa sums is 2n+3 - 10. Except 
the leaf nodes, each mantissa sum can be represented by 2m nodes, but there is some sharing 
among the mantissa graphs. First, let us look at the sharing among the mantissa sums of true 
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addition. For case 4 in Equation 8.5, the graphs to represent function 0..V + 2Ey _1 x 1. Y share 
the same subgraph 1.1', which is also in the graph representing function l.A' + 0.1'. Thus, 
there are 2" — 1 distinct mantissa sums to share the same graph(l.Y'). Again, the graphs to 
represent l.X + 1.1' in case 2 and 2 x l.A" + 0.1' in case 3, share the sub-graph 2 -f 0.1'', since 
l.A + 1.1= 0.A + (2 + 0.1) and 2 x l.A + 0.1' = 2 x 0. A + (2 + 0.1'). Therefore, we have 
to subtract (2" - 1)??? nodes from the total nodes. 

Then, let us look at the true subtraction. First, the graph to represent 0.A' — 0.1' shares the 
sub-graph 0.1' with 0.X + 0.1' in true addition, because of the negation edge. For Case 4 in 
Equation 8.6, the graphs to represent function 0.A' - 2EA ~l x 1.1" share the same subgraph 1.1' 
in true addition. The graphs to represent 1. A' - 0.1' in case 3 and 2 x 1. A - 1.1' in case 0, share 
the sub-graph 1-0.1', since l.A+l.l'=0.A+( 1-0.1") and2x l.A- l.l'=2x0.A + (l-0.1). 
Therefore, we have to subtract (2" + 1)??? nodes from the total nodes. Thus, the number of 
non-leaf nodes to represent these distinct mantissa sums is (7x2" — 10) x (2m). 

The leaf nodes 1 and 0 are referenced by these non-leaf nodes. For true addition, the number 
of leaf nodes, except leaf node 1, is 2" — 2, since the leaf nodes of the mantissa sum for 
EX < EY can be shared with the mantissa sum for EX > EY. To be specific, the leaf nodes 
are generated by the sum of the leading Is in the form of 1 + 1 x 2EY ~EX or 1 x 2EX ~EY + 1, 
and there are only 2" — 2 sums. Similarly, for true subtraction, there are 2" — 4 leaf nodes, but 
the leaf nodes 3 (22 — 1) and 0 (2° — 1) already exist. Thus, the total number of leaf nodes is 
2 + (2n - 2) + (2" — 4) = 2n+1 - 4. Therefore, the size of the mantissa part of resulting graph 
is (7 x 2" - 10) x (2m) + 2"+1 - 4 = 2n+1(7m - 1) - 20m - 4. [J 

Lemma 2 For all n > 2, the number of *PHDD nodes of the exponent part of the resulting 
graph is 5 x 2"+2 - 16 x n - 18. 

Proof: As mentioned before, the resulting graph can be divided into two parts: true addition 
and true subtraction. First, we prove that the number of nodes of the exponent part for true 
addition is 5 x 2"+1 — 8 x n — 9. We prove this claim by the induction on the number of 
exponent bits n. 

Base Case: If n = 2, the number of exponent nodes for true addition is 5 x 22+1 — 8x2 — 9= 15 
as shown in Figure 4.8. 

Induction Step: Assume the claim holds for n = k. To prove that the claim holds for 
n = k + 1, let EXk and EY\. represent the low k bits of EX and EY. Thus, EX is represented 
as 2k x exk + EXk. Based on the values of EXk and EYk, Equation 6.1 can be rewritten as 
the following: 

FA- + Fv = (-l)*-x 



B. FLOATING-POINT ADDITION 103 

2\-B x{2((2*-i)xe^) xG + 2((2k-i)xeyk) x H} Case 0 : EXk = EYk = 0 

2l-B x{2(BA-t-l+(2l-l)XeIt) x IJ + HX2((
2
'-')

X
»)} Case 1 : EXk > 0 &EYk = 0 

2'-B x{Gx2«!'-I)xel')+U'x2lS!'»-1+(2k-1)«»*)} Case2:EXk=0&EYk >0 (8.7) 
2EVi-s x{(2B^--Bn+2,txex,) x i.x+i.yx2P'«9l)} Case3:EXk > 0 &EFfc > 0 &£A'A-> EFfc 

2M»-B x{2f2txe^) x l.Ax +l.yx2(Ey*-M*+2''«»)} Case 4 : EA^ > 0 &Erfc > 0 &EXk < EYk 

where G (H) is 0.X (O.F) if exk (eyk) is 0; otherwise, G (H) is l.X (l.Y). Figure 8.1.a 
illustrates the distinct sub-graphs after expanding variable eyk_\. These sub-graphs are divided 
into five types, according to the cases in Equation 8.7. For Case 0, there is only one distinct 
sub-graph. For Case 1, there are 2k - 1 distinct sub-graphs, since the number of possible value 
of EXk is 2

k - 1 and each value of EXk will generate a unique function. Similarly, there are 
2k - 1, 2k - 2, and 2k - 1 distinct sub-graphs for Case 2, 3, and 4, respectively. Thus, the total 
number of distinct sub-graphs is 2k+2 — 4. 

Figures 8.Lb shows the sub-graph for Case 0. In the graphs, each tuple (i, P, j, Q) represents 
2* x P+2j x Q. For example, tuple (0,0.X, 0,0.F) represents 2° x O.X+20 x O.Y. Figures 8.1.c 
to Figures 8.1.f show the graphs with a parameter i for Cases 1, 2, 3 and 4, which serve as the 
template of the graphs in the cases. For instance, the graph in Case 1 with i = 1 represents the 
function2(£^-1+(2fc-1)xe^)xl.X+//x2((2'I-1)x^)withEA^ = 1 in Case 2 of Equation 8.7. 

Since each sub-graph is distinct, the nodes with variable exk are unique (i.e. no sharing). 
Observing from these five types of sub-graphs, the possible sharing among the nodes with 
variable eyk is these cases: the eyk nodes in case 2 share with that in cases 3 and 4, and the 
nodes in case 3 share with that in case 4. For the first case, the possible sharing is the right 
eyk nodes in Figure 8.1.e and Figure 8.1.g. Observe that these two eyk node will be that same 
in the graph with i = j in case 2 and the graph with i = j + 1 in case 4. Since the possible 
values of i are ranged from 0 to 2k - 3, there are 2k - 2 eyk nodes shared. When i = 2k - 2, 
the right eyk node in the graph of case 2 will be shared with the left eyk node in the graph with 
i=l in Figure 8.1.e. Therefore, all of the right eyk nodes in Case 2 are shared nodes and are 
2k — 1 nodes. For the second case, the possible sharing is the left eyk node in Figure 8.1.e and 
the right eyk node in Figure 8.1.f. Observe that when ii + i2 = 2k, the left eyk node in the 
graph with i = i\ in case 3 is the same as the right eyk node in the graph with i = i2 in case 4. 
Since 2 < z'i < 2k - 2 and 0 < i2 < 2k - 2, there are 2k - 3 nodes shared. Therefore, the total 
number of exponent nodes are 5 x 2k+1 -Sxk-9 + 3x (2k+2 - 4) - (2k - 1) - (2k - 3) = 
5 x 2<fc+1)+1 -8x(Hl)-9 = 5x 2n+1 - 8 x n - 9. 

Similarly, the number of nodes of the exponent part for true subtraction is 5 x 2"+1 - 8 x n - 9. 
Therefore, the size of the exponent part of the resulting graph is 5 x 2n+2 - 16 x n - 18. Q 

Theorem 3 For the floating-point addition, the size of the resulting graph is 2n+l x (7m + 
9) - 20m - 16n - 19. 
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(0,0.X,0.0.Y)(0,0.X,2k-l,1.Y) (2k-l,l.X,0,0.Y)   (O.l.X.OJ.Y) 

(b). Case 0 

Wti :«% 

(i,l.X,0,0.Y)(0,l.X,2k-i-l ,1.Y)   (i+2k,l.X,0,0.Y) (i+lJ.X.O.l-Y) 

(c). Case 1 

P\ 
(O.OXiJ.Y) (0,0.X,2k+i,l.Y) (2k-i-l ,1.X,0,1.Y)   (0,lXi+l,l.Y) 

(d). Case 2 

<*i) 

/      ^ 
(i,l.X,0,l.Y) (0,l.X,2k-i,1.Y)   (i+2k,l.X,0,l.Y) (i,l.X,0,l.Y) 

(e). Case 3 

(O.LXXIY) (0,l.X,2k+i,l.Y) (2k-i ,1.X,0,1.Y)   (O.l.X.U-Y) 

(f). Case 4 

Figure 8.1: Distinct sub-graphs after variable eyk—\. (a) Distinct sub-graphs after variable 
eyk-i are divided into 5 types shown in graphs (b) to (f) which serve as template with a 
parameter i. (b) Case 0 only has one distinct graph, (c) 0 < i'■ — EX^ — 1 < 2A — 2. (d) 
0 < i = EYk-1 < 2A-2. (e) 1 < i = EXh~EYk < 2*-2. (f) 1 < i = EYk-EXk < 2l-2. 
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Proof: The size of the resulting graph is the sum of the nodes for the sign, exponent and 
mantissa parts. The nodes for the sign part are 3 as shown in Figure 4.8. Lemma 1 and 2 
have shown the sizes of the mantissa and exponent parts respectively. Therefore, their sum is 
2«+i x (7m + 9) _ 20?72 - 16n - 19. □ 
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